Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to throw light on how galaxies formed in the early Universe

23.12.2008
UK scientists, led by Dr Mark Lacy who is soon to join the University of Southampton, have been successful in obtaining one of the largest-ever awards of observing time on a space-based observatory - a total of 1400 hours on NASA's Spitzer Space Telescope. The observing time will be used to obtain a complete picture of how galaxies formed and evolved in the early Universe.

The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to chart the distribution of stars and black holes from when the Universe was less than a billion years old to the present day. It will use Spitzer's Infrared Array Camera (IRAC) to make a very large map of the sky, capable of detecting extremely faint galaxies.

The combination of sensitivity of the equipment and the size of the area mapped by SERVS is unprecedented, making it likely to be the benchmark near-infrared survey for the next decade. The sensitivity means that the scientists will be able to detect moderately massive galaxies when the Universe was less than 8 per cent of its current age, while the wide area means that formation processes can be studied in the context of the underlying distribution of `dark' matter.

The sky regions in the survey were chosen to coincide with those that will be observed through deep imaging from the Herschel Space Observatory, the SCUBA-2 camera on the James Clerk Maxwell Telescope in Hawaii, and from the Vista Deep Extragalactic Observations survey (VIDEO). The combination of data from each of these facilities over a wide range in wavelength will give scientists a complete picture of how galaxies evolve, with no part of the formation process 'hidden' because of the effects of dust obscuration.

Dr Mark Lacy explains: "This mid-infrared survey fills a crucial gap in wavelength between the large near-infrared surveys being conducted by UK-based teams, and the far-infrared surveys to be conducted by Herschel and SCUBA-2. It will allow us to study the formation and evolution of massive galaxies like our own Milky Way in a truly representative volume of the Universe for the first time."

Mark, who is currently based at the California Institute of Technology, joins the University of Southampton as a Reader in extragalactic astronomy in September 2009.

Co-investigators include Duncan Farrah and Seb Oliver from the University of Sussex, and Matt Jarvis at the University of Hertfordshire. Other UK institutions involved include Oxford, Cambridge, Imperial College, Portsmouth and Durham. In all there are 47 investigators, of which 25 are from the UK.

The project also represents a success for the newly-formed South East Physics Network (SEPNET) which includes the Universities of Southampton, Sussex, Portsmouth and Oxford.

Dr Matt Jarvis, University of Hertfordshire, adds: "The combination of SERVS and VIDEO will allow us to make the definitive study of how galaxies grow over the history of the Universe. However, the major improvement over past surveys is the combination of depth and area, allowing us to carry out these studies over both the densest and sparsest regions of the Universe. This will enable us to build up a picture of how galaxy formation and evolution is affected by the environment in which the galaxies reside."

Sue Wilson | alfa
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>