Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists to throw light on how galaxies formed in the early Universe

UK scientists, led by Dr Mark Lacy who is soon to join the University of Southampton, have been successful in obtaining one of the largest-ever awards of observing time on a space-based observatory - a total of 1400 hours on NASA's Spitzer Space Telescope. The observing time will be used to obtain a complete picture of how galaxies formed and evolved in the early Universe.

The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to chart the distribution of stars and black holes from when the Universe was less than a billion years old to the present day. It will use Spitzer's Infrared Array Camera (IRAC) to make a very large map of the sky, capable of detecting extremely faint galaxies.

The combination of sensitivity of the equipment and the size of the area mapped by SERVS is unprecedented, making it likely to be the benchmark near-infrared survey for the next decade. The sensitivity means that the scientists will be able to detect moderately massive galaxies when the Universe was less than 8 per cent of its current age, while the wide area means that formation processes can be studied in the context of the underlying distribution of `dark' matter.

The sky regions in the survey were chosen to coincide with those that will be observed through deep imaging from the Herschel Space Observatory, the SCUBA-2 camera on the James Clerk Maxwell Telescope in Hawaii, and from the Vista Deep Extragalactic Observations survey (VIDEO). The combination of data from each of these facilities over a wide range in wavelength will give scientists a complete picture of how galaxies evolve, with no part of the formation process 'hidden' because of the effects of dust obscuration.

Dr Mark Lacy explains: "This mid-infrared survey fills a crucial gap in wavelength between the large near-infrared surveys being conducted by UK-based teams, and the far-infrared surveys to be conducted by Herschel and SCUBA-2. It will allow us to study the formation and evolution of massive galaxies like our own Milky Way in a truly representative volume of the Universe for the first time."

Mark, who is currently based at the California Institute of Technology, joins the University of Southampton as a Reader in extragalactic astronomy in September 2009.

Co-investigators include Duncan Farrah and Seb Oliver from the University of Sussex, and Matt Jarvis at the University of Hertfordshire. Other UK institutions involved include Oxford, Cambridge, Imperial College, Portsmouth and Durham. In all there are 47 investigators, of which 25 are from the UK.

The project also represents a success for the newly-formed South East Physics Network (SEPNET) which includes the Universities of Southampton, Sussex, Portsmouth and Oxford.

Dr Matt Jarvis, University of Hertfordshire, adds: "The combination of SERVS and VIDEO will allow us to make the definitive study of how galaxies grow over the history of the Universe. However, the major improvement over past surveys is the combination of depth and area, allowing us to carry out these studies over both the densest and sparsest regions of the Universe. This will enable us to build up a picture of how galaxy formation and evolution is affected by the environment in which the galaxies reside."

Sue Wilson | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>