Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to throw light on how galaxies formed in the early Universe

23.12.2008
UK scientists, led by Dr Mark Lacy who is soon to join the University of Southampton, have been successful in obtaining one of the largest-ever awards of observing time on a space-based observatory - a total of 1400 hours on NASA's Spitzer Space Telescope. The observing time will be used to obtain a complete picture of how galaxies formed and evolved in the early Universe.

The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to chart the distribution of stars and black holes from when the Universe was less than a billion years old to the present day. It will use Spitzer's Infrared Array Camera (IRAC) to make a very large map of the sky, capable of detecting extremely faint galaxies.

The combination of sensitivity of the equipment and the size of the area mapped by SERVS is unprecedented, making it likely to be the benchmark near-infrared survey for the next decade. The sensitivity means that the scientists will be able to detect moderately massive galaxies when the Universe was less than 8 per cent of its current age, while the wide area means that formation processes can be studied in the context of the underlying distribution of `dark' matter.

The sky regions in the survey were chosen to coincide with those that will be observed through deep imaging from the Herschel Space Observatory, the SCUBA-2 camera on the James Clerk Maxwell Telescope in Hawaii, and from the Vista Deep Extragalactic Observations survey (VIDEO). The combination of data from each of these facilities over a wide range in wavelength will give scientists a complete picture of how galaxies evolve, with no part of the formation process 'hidden' because of the effects of dust obscuration.

Dr Mark Lacy explains: "This mid-infrared survey fills a crucial gap in wavelength between the large near-infrared surveys being conducted by UK-based teams, and the far-infrared surveys to be conducted by Herschel and SCUBA-2. It will allow us to study the formation and evolution of massive galaxies like our own Milky Way in a truly representative volume of the Universe for the first time."

Mark, who is currently based at the California Institute of Technology, joins the University of Southampton as a Reader in extragalactic astronomy in September 2009.

Co-investigators include Duncan Farrah and Seb Oliver from the University of Sussex, and Matt Jarvis at the University of Hertfordshire. Other UK institutions involved include Oxford, Cambridge, Imperial College, Portsmouth and Durham. In all there are 47 investigators, of which 25 are from the UK.

The project also represents a success for the newly-formed South East Physics Network (SEPNET) which includes the Universities of Southampton, Sussex, Portsmouth and Oxford.

Dr Matt Jarvis, University of Hertfordshire, adds: "The combination of SERVS and VIDEO will allow us to make the definitive study of how galaxies grow over the history of the Universe. However, the major improvement over past surveys is the combination of depth and area, allowing us to carry out these studies over both the densest and sparsest regions of the Universe. This will enable us to build up a picture of how galaxy formation and evolution is affected by the environment in which the galaxies reside."

Sue Wilson | alfa
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>