Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Take Theoretical Research on 'Nasty' Molecule to Next Level

08.12.2009
Some atoms don't always follow the rules.

Take the beryllium dimer, a seemingly simple molecule made up of two atoms that University of Delaware physicists Krzysztof Szalewicz and Konrad Patkowski and colleague Vladimír Spirko of the Academy of Sciences of the Czech Republic report on in the Dec. 4 edition of the journal Science.

Beryllium is a strong, hard, toxic metal found naturally in minerals such as emeralds and commonly used as an alloy with other metals in many applications, from the tweeters of loudspeakers for public address systems to elements of nuclear weapons.

For decades, scientists believed the two atoms that compose the beryllium dimer repelled each other. That follows a basic theory of chemistry that explains how the electrons in a molecule occupy different orbitals, says Patkowski, a postdoctoral researcher at UD who works in the Szalewicz Lab and was the lead author of the study.

However, in the 1960s, scientists discovered that instead of repelling each other, the two atoms actually bond with each other.

More than 100 theoretical papers have been published on this bonding energy, Patkowski says, but they report a wide range of predictions and the most trustworthy ones differed dramatically from the measured value.

However, in May 2009, a scientific team from Emory University reported in Science the results of an experimental study that recorded the vibrational energy of the bonding atoms for 11 levels, finally reconciling the experimental and theoretical models.

“A molecule vibrates, so the distance between atoms changes in time. A molecule can't just sit there and not vibrate,” Patkowski explains. “The more vibrational energy a molecule has, the farther its atoms stray from their equilibrium positions.”

In this latest issue of Science, the UD-led team confirms a 12th and highest vibrational level for the beryllium molecule, thanks in part to their Czech colleague Spirko's expertise in “morphing,” which enables researchers to make simple changes to the theoretical interaction energy curve to agree with experimental findings. Morphed versions of this potential energy, fitted to experimental data, closely reproduce the observed spectra.

Patkowski notes that the UD study was close to completion when the Emory team published their results.

“Their results agreed with our study, so it was really gratifying to see the previous mysterious disagreement between experimental and theoretical numbers from the past disappear. Their work showed us we were going in the right direction,” Patkowski notes.

The beryllium dimer is commonly used in benchmarking studies in experimental and theoretical physics, yet the molecule is anything but common, Patkowski says.

“It's a prototype system that is small and nasty, both for experimental studies, because of its toxicity and reactivity, and for theoretical studies, because standard quantum chemistry methods work very poorly here,” he notes.

“The interesting thing about this molecule is that basic chemistry knowledge tells us that the atoms are not going to bond, but they do -- and it's a pretty strong one. It's a nice model for developing new theories of molecular physics,” Patkowski says.

The research was funded by the National Science Foundation (U.S.) and by the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>