Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists study the 'galaxy zoo' using Google Maps and thousands of volunteers

04.11.2011
The reddest galaxies with the largest central bulb show the largest bars -gigantic central columns of stars and dark matter-, according to a scientific study that used Google Maps to observe the sky. A group of volunteers of more than 200,000 participants of the galaxy classification project Galaxy Zoo contributed to this research.

More than two thirds of spiral galaxies, including our own Milky Way, display a central bar that can extend for thousands of light years. These colossal elongated structures are made up of collections of stars and dark matter which are held together by gravity.

Now a team of researchers from Europe and the USA have measured the bar length of some 5000 galaxies with the help of amateur astronomers. The most precise results (those obtained for 3150 galaxies) have been published in the Monthly Notices of the Royal Astronomical Society journal.

The study comes under the Galaxy Zoo project, a citizen science initiative in which more than 200,000 volunteers assisted in classifying a million galaxies through images provided by the Sloan Digital Sky Survey astronomical catalogue. As for the bars, 150 amateur astronomers have recorded their observations on a webpage specifically created for this purpose. The page is currently still active despite being closed to any further data entry.

Ben Hoyle, researcher at the Institute of Cosmos Sciences (University of Barcelona, Spain) and coordinator of the study, stresses to SINC that "this webpage combines Galaxy Zoo classifications with Google Maps technology." More precisely, the team has used the Google Maps Sky interface which allows to see the sky, especially the galaxies, as seen from the Earth's surface.

"In this way we have compiled some 16,000 measurements of the bars of 5000 galaxies, which is a sample a hundred times greater than previous ones. We have also come to many different conclusions, such as the fact that redder galaxies, which are stopping star formation, have longer bars," says Hoyle.

In the electromagnetic spectrum, the colour red comes from older, cooler stars whereas the colour blue is linked to hotter and younger stars. The study also reveals that the bars tend to be redder than the rest of the galaxy, which indicates that they have an older stellar population.

Other conclusions indicate that those galaxies with a larger bulb (a central agglomeration of stars) have longer bars. In addition, barred galaxies are more likely to display spiral arms than unbarred galaxies.

References: Ben Hoyle, Karen. L. Masters, Robert C. Nichol, Edward M. Edmondson, Arfon M. Smith, Chris Lintott, Ryan Scranton, Steven Bamford, Kevin Schawinski, Daniel Thomas. "Galaxy Zoo: Bar Lengths in Nearby Disk Galaxies". Monthly Notices of the Royal Astronomical Society 415 (4): 3627-3640, 2011. Doi: 10.1111/j.1365-2966.2011.18979.x.

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>