Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists show a new way to absorb electromagnetic radiation


An international scientific team have demonstrated that it is possible to fully absorb electromagnetic radiation using an anisotropic crystal, which primarily important for reducing of the radar

A team of authors from MIPT, Kansas State University, and the U.S. Naval Research Laboratory have demonstrated that it is possible to fully absorb electromagnetic radiation using an anisotropic crystal. The observations are of fundamental importance for electrodynamics and will provide researchers with an entirely new method of absorbing the energy of electromagnetic waves. The paper has been published in Physical Review B.

On the left is an absorbing medium lying on a reflective substrate. On the right is an absorbing medium with an anti-reflective coating applied on top. In both cases the interference of light results in the complete absorption of energy within the artificial structure.

Image courtesy of the authors of the study

Effective absorption of the energy of electromagnetic radiation is the cornerstone of a wide range of practical applications. Electromagnetic energy harvesting in the visible spectrum is very important for photovoltaics - the conversion of solar energy into direct current electricity. Absorbing materials in the microwave range of frequencies have an application that is equally as important - they are able to reduce the radar visibility of an aircraft. Effective absorption of electromagnetic waves is also important for use in sensing, nanochemistry, and photodynamic therapy.

A classic example of an electromagnetic absorber that is familiar to many people is ordinary black paint. It looks black because a significant amount of the light that falls on it is absorbed in the layer of paint and does not reach the observer. However, black paint is a relatively poor absorber - a certain amount of energy from the incident light (typically a few percent) is still reflected back into the surrounding space.

In order to absorb incident radiation completely, we need to use interference. A layer of absorbing material is placed on a reflective substrate or is combined with a specially designed anti-reflective coating. According to the laws of classical electrodynamics, there emerges a sequence of waves having different amplitudes and phases that are reflected from the structure. Such series of reflections also occurs in a soap film. When white light falls on the film, we see reflected light of a certain colour depending on the thickness of the film. When light falls on an absorbing system, if the coating parameters have been chosen properly, the reflected waves cancel each other out - reflected radiation vanishes completely and the absorption becomes perfect. This type of interference is called destructive interference. Absorption in such systems is very sensitive to the geometry of the structure. With the slightest variation in thickness or refractive indices of the layers the absorption is no longer perfect and reflected radiation reappears.

In their paper, the researchers from Russia and the US showed that destructive interference is not a necessary requirement for perfect absorption. The scientists used an anisotropic crystal - hexagonal boron nitride - as their specific absorbing system.

This medium belongs to the class of unique van der Waals crystals which consist of atomic layers bound together by van der Waals forces from adjacent layers. Van der Waals forces occur between atoms and molecules that are electrically neutral but possess a dipole moment - the charges in them are not uniformly distributed. Due to this arrangement of the lattice, the dielectric permittivity of the crystal in the mid-infrared range (wavelength of about 10 microns) differs considerably for the in- and out-of-plane directions - it becomes anisotropic and is not described by a single number, but by a tensor - a matrix of numbers (each number is responsible for its own direction). It is the dielectric permittivity tensor that determines how light is reflected from the surface of any substance.

Due to the unusual properties of its crystal lattice, hexagonal boron nitride has already found a number of applications in optics and nanoelectronics. In this particular case, the strong anisotropy of dielectric permittivity works in our favour and helps to absorb electromagnetic waves. Incident infrared radiation at a certain wavelength enters the crystal without reflections and is completely absorbed within the medium. There is no need for any anti-reflective layers or a substrate to provide destructive interference - reflected radiation simply does not occur, unlike in an isotropic (i.e. identical in all directions) absorbing medium.

"The ability to fully absorb electromagnetic radiation is one of the key areas of focus in electrodynamics. It is believed that destructive interference is needed to do this, which therefore requires the use of anti-reflective coatings, substrates and other structures. Our observations indicate that interference is not a compulsory requirement and perfect absorption can be achieved using simpler systems," says Denis Baranov, the corresponding author of the paper.

For the experimental observation of the predicted phenomenon, the researchers grew an optically thick sample of hexagonal boron nitride and measured the reflectance spectrum in the mid-infrared range. At the wavelengths and angles of incidence predicted analytically, the authors observed a strong drop in the reflected signal - less than 10-4 of the incident energy was reflected from the system. In other words, more than 99.99% of the incident wave energy was absorbed in the anisotropic crystal.

The approach proposed by the researchers is currently only able to achieve perfect absorption for a fixed wavelength and angle of incidence, both of which are determined by the electronic properties of the material. However, for practical applications the possibility of energy absorption in a wide range of wavelengths and angles of incidence is of more interest. The use of alternative strongly anisotropic materials such as biaxial absorbing media will likely help to bypass these limitations in the future, making this approach more flexible.

Nevertheless, this experiment is of interest from a fundamental point of view. It demonstrates that it is possible to completely absorb radiation without the incorporation of destructive interference. This effect offers a new tool for controlling electromagnetic absorption. In the future, these materials could give a greater level of flexibility when designing absorbing devices and sensors that operate in the infrared range.

Media Contact

Valerii Roizen


Valerii Roizen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>