Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show a new way to absorb electromagnetic radiation

18.01.2016

An international scientific team have demonstrated that it is possible to fully absorb electromagnetic radiation using an anisotropic crystal, which primarily important for reducing of the radar

A team of authors from MIPT, Kansas State University, and the U.S. Naval Research Laboratory have demonstrated that it is possible to fully absorb electromagnetic radiation using an anisotropic crystal. The observations are of fundamental importance for electrodynamics and will provide researchers with an entirely new method of absorbing the energy of electromagnetic waves. The paper has been published in Physical Review B.


On the left is an absorbing medium lying on a reflective substrate. On the right is an absorbing medium with an anti-reflective coating applied on top. In both cases the interference of light results in the complete absorption of energy within the artificial structure.

Image courtesy of the authors of the study

Effective absorption of the energy of electromagnetic radiation is the cornerstone of a wide range of practical applications. Electromagnetic energy harvesting in the visible spectrum is very important for photovoltaics - the conversion of solar energy into direct current electricity. Absorbing materials in the microwave range of frequencies have an application that is equally as important - they are able to reduce the radar visibility of an aircraft. Effective absorption of electromagnetic waves is also important for use in sensing, nanochemistry, and photodynamic therapy.

A classic example of an electromagnetic absorber that is familiar to many people is ordinary black paint. It looks black because a significant amount of the light that falls on it is absorbed in the layer of paint and does not reach the observer. However, black paint is a relatively poor absorber - a certain amount of energy from the incident light (typically a few percent) is still reflected back into the surrounding space.

In order to absorb incident radiation completely, we need to use interference. A layer of absorbing material is placed on a reflective substrate or is combined with a specially designed anti-reflective coating. According to the laws of classical electrodynamics, there emerges a sequence of waves having different amplitudes and phases that are reflected from the structure. Such series of reflections also occurs in a soap film. When white light falls on the film, we see reflected light of a certain colour depending on the thickness of the film. When light falls on an absorbing system, if the coating parameters have been chosen properly, the reflected waves cancel each other out - reflected radiation vanishes completely and the absorption becomes perfect. This type of interference is called destructive interference. Absorption in such systems is very sensitive to the geometry of the structure. With the slightest variation in thickness or refractive indices of the layers the absorption is no longer perfect and reflected radiation reappears.

In their paper, the researchers from Russia and the US showed that destructive interference is not a necessary requirement for perfect absorption. The scientists used an anisotropic crystal - hexagonal boron nitride - as their specific absorbing system.

This medium belongs to the class of unique van der Waals crystals which consist of atomic layers bound together by van der Waals forces from adjacent layers. Van der Waals forces occur between atoms and molecules that are electrically neutral but possess a dipole moment - the charges in them are not uniformly distributed. Due to this arrangement of the lattice, the dielectric permittivity of the crystal in the mid-infrared range (wavelength of about 10 microns) differs considerably for the in- and out-of-plane directions - it becomes anisotropic and is not described by a single number, but by a tensor - a matrix of numbers (each number is responsible for its own direction). It is the dielectric permittivity tensor that determines how light is reflected from the surface of any substance.

Due to the unusual properties of its crystal lattice, hexagonal boron nitride has already found a number of applications in optics and nanoelectronics. In this particular case, the strong anisotropy of dielectric permittivity works in our favour and helps to absorb electromagnetic waves. Incident infrared radiation at a certain wavelength enters the crystal without reflections and is completely absorbed within the medium. There is no need for any anti-reflective layers or a substrate to provide destructive interference - reflected radiation simply does not occur, unlike in an isotropic (i.e. identical in all directions) absorbing medium.

"The ability to fully absorb electromagnetic radiation is one of the key areas of focus in electrodynamics. It is believed that destructive interference is needed to do this, which therefore requires the use of anti-reflective coatings, substrates and other structures. Our observations indicate that interference is not a compulsory requirement and perfect absorption can be achieved using simpler systems," says Denis Baranov, the corresponding author of the paper.

For the experimental observation of the predicted phenomenon, the researchers grew an optically thick sample of hexagonal boron nitride and measured the reflectance spectrum in the mid-infrared range. At the wavelengths and angles of incidence predicted analytically, the authors observed a strong drop in the reflected signal - less than 10-4 of the incident energy was reflected from the system. In other words, more than 99.99% of the incident wave energy was absorbed in the anisotropic crystal.

The approach proposed by the researchers is currently only able to achieve perfect absorption for a fixed wavelength and angle of incidence, both of which are determined by the electronic properties of the material. However, for practical applications the possibility of energy absorption in a wide range of wavelengths and angles of incidence is of more interest. The use of alternative strongly anisotropic materials such as biaxial absorbing media will likely help to bypass these limitations in the future, making this approach more flexible.

Nevertheless, this experiment is of interest from a fundamental point of view. It demonstrates that it is possible to completely absorb radiation without the incorporation of destructive interference. This effect offers a new tool for controlling electromagnetic absorption. In the future, these materials could give a greater level of flexibility when designing absorbing devices and sensors that operate in the infrared range.

Media Contact

Valerii Roizen
roizen@phystech.edu
7-929-992-2721

 @phystech

http://mipt.ru/en/ 

Valerii Roizen | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>