Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists score 1 more victory over uncertainty in quantum physics measurements

27.02.2012
Squeezing what hasn't been squeezed before

Most people attempt to reduce the little uncertainties of life by carrying umbrellas on cloudy days, purchasing automobile insurance or hiring inspectors to evaluate homes they might consider purchasing. For scientists, reducing uncertainty is a no less important goal, though in the weird realm of quantum physics, the term has a more specific meaning.

For scientists working in quantum physics, the Heisenberg Uncertainty Principle says that measurements of properties such as the momentum of an object and its exact position cannot be simultaneously specified with arbitrary accuracy. As a result, there must be some uncertainty in either the exact position of the object, or its exact momentum. The amount of uncertainty can be determined, and is often represented graphically by a circle showing the area within which the measurement actually lies.

Over the past few decades, scientists have learned to cheat a bit on the Uncertainty Principle through a process called "squeezing," which has the effect of changing how the uncertainty is shown graphically. Changing the circle to an ellipse and ultimately to almost a line allows one component of the complementary measurements – the momentum or the position, in the case of an object – to be specified more precisely than would otherwise be possible. The actual area of uncertainty remains unchanged, but is represented by a different shape that serves to improve accuracy in measuring one property.

This squeezing has been done in measuring properties of photons and atoms, and can be important to certain high-precision measurements needed by atomic clocks and the magnetometers used to create magnetic resonance imaging views of structures deep inside the body. For the military, squeezing more accuracy could improve the detection of enemy submarines attempting to hide underwater or improve the accuracy of atom-based inertial guidance instruments.

Now physicists at the Georgia Institute of Technology have added another measurement to the list of those that can be squeezed. In a paper appearing online February 26 in the journal Nature Physics, they report squeezing a property called the nematic tensor, which is used to describe the rubidium atoms in Bose-Einstein condensates, a unique form of matter in which all atoms have the same quantum state. The research was sponsored by the National Science Foundation (NSF).

"What is new about our work is that we have probably achieved the highest level of atom squeezing reported so far, and the more squeezing you get, the better," said Michael Chapman, a professor in Georgia Tech's School of Physics. "We are also squeezing something other than what people have squeezed before."

Scientists have been squeezing the spin states of atoms for 15 years, but only for atoms that have just two relevant quantum states – known as spin ½ systems. In collections of those atoms, the spin states of the individual atoms can be added together to get a collective angular momentum that describes the entire system of atoms.

In the Bose-Einstein condensate atoms being studied by Chapman's group, the atoms have three quantum states, and their collective spin totals zero – not very helpful for describing systems. So Chapman and graduate students Chris Hamley, Corey Gerving, Thai Hoang and Eva Bookjans learned to squeeze a more complex measure that describes their system of spin 1 atoms: nematic tensor, also known as quadrupole.

Nematicity is a measure of alignment that is important in describing liquid crystals, exotic magnetic materials and some high temperature superconductors.

"We don't have a spin vector pointing in a particular direction, but there is still some residual information in where this collection of atoms is pointing," Chapman explained. "That next higher-order description is the quadrupole, or nematic tensor. Squeezing this actually works quite well, and we get a large degree of improvement, so we think it is relatively promising."

Experimentally, the squeezing is created by entangling some of the atoms, which takes away their independence. Chapman's group accomplishes this by colliding atoms in their ensemble of some 40,000 rubidium atoms.

"After they collide, the state of one atom is connected to that of the other atom, so they have been entangled in that way," he said. "This entanglement creates the squeezing."

Reducing uncertainty in measuring atoms could have important implications for precise magnetic measurements. The next step will be to determine experimentally if the technique can improve the measurement of magnetic field, which could have important applications.

"In principle, this should be a straightforward experiment, but it turns out that the biggest challenge is that magnetic fields in the laboratory fluctuate due to environmental factors such as the effects of devices such as computer monitors," Chapman said. "If we had a noiseless laboratory, we could measure the magnetic field both with and without squeezed states to demonstrate the enhanced precision. But in our current lab environment, our measurements would be affected by outside noise, not the limitations of the atomic sensors we are using."

The new squeezed property could also have application to quantum information systems, which can store information in the spin of atoms and their nematic tensor.

"There are a lot of things you can do with quantum entanglement, and improving the accuracy of measurements is one of them," Chapman added. "We still have to obey Heisenberg's Uncertainty Principle, but we do have the ability to manipulate it."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>