Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal Milky Way's Magnetic Attraction

08.01.2010
An international research project involving the University of Adelaide has revealed that the magnetic field in the centre of the Milky Way is at least 10 times stronger than the rest of the Galaxy.

The evidence is significant because it gives astronomers a lower limit on the magnetic field, an important factor in calculating a whole range of astronomical data.

Researchers from the Max-Planck-Institute for Nuclear Physics, the University of Adelaide, Monash University and the United States have published their findings in Nature this week.

Dr Roland Crocker, the lead author, and Dr David Jones both worked on the project while based at Monash University and the University of Adelaide’s School of Chemistry and Physics. The two physicists are now based at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany.

“This research will challenge current thinking among astronomers,” Dr Crocker says. “For the last 30 years there has been considerable uncertainty of the exact value of the magnetic field in the centre of the Milky Way. The strength of this field enters into most calculations in astronomy, since almost all of space is magnetised,” he says.

Dr Jones says the findings will affect diverse fields, from star formation theory to cosmology.

“If our Galactic Centre’s magnetic field is stronger than we thought, this raises additional questions of how it got so strong when fields in the early universe are, in contrast, quite weak. We know now that more than 10% of the Galaxy’s magnetic energy is concentrated in less than 0.1% of its volume, right at its centre,” he says.

Dr Jones completed his PhD at Adelaide, studying the Galactic Centre magnetic field under the supervision of Dr Raymond Protheroe, Associate Professor of Physics at the University of Adelaide, and Dr Crocker, a former postdoctoral researcher at the University.

“The Milky Way just glows in radio waves and in gamma-rays produced by collisions of energetic particles, and is brightest near its centre. Knowing the magnetic field there helps us understand the source of the radio and gamma-rays better,” says Dr Protheroe.

The Australian Research Council provided funding for the project.

Dr Roland Crocker
Marie Curie Fellow
Max-Planck-Institute for Nuclear Physics
Phone: +49 6221 516 208
Mobile: +49 1765 333 8683

Dr Roland Crocker | Newswise Science News
Further information:
http://www.adelaide.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>