Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal Milky Way's Magnetic Attraction

08.01.2010
An international research project involving the University of Adelaide has revealed that the magnetic field in the centre of the Milky Way is at least 10 times stronger than the rest of the Galaxy.

The evidence is significant because it gives astronomers a lower limit on the magnetic field, an important factor in calculating a whole range of astronomical data.

Researchers from the Max-Planck-Institute for Nuclear Physics, the University of Adelaide, Monash University and the United States have published their findings in Nature this week.

Dr Roland Crocker, the lead author, and Dr David Jones both worked on the project while based at Monash University and the University of Adelaide’s School of Chemistry and Physics. The two physicists are now based at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany.

“This research will challenge current thinking among astronomers,” Dr Crocker says. “For the last 30 years there has been considerable uncertainty of the exact value of the magnetic field in the centre of the Milky Way. The strength of this field enters into most calculations in astronomy, since almost all of space is magnetised,” he says.

Dr Jones says the findings will affect diverse fields, from star formation theory to cosmology.

“If our Galactic Centre’s magnetic field is stronger than we thought, this raises additional questions of how it got so strong when fields in the early universe are, in contrast, quite weak. We know now that more than 10% of the Galaxy’s magnetic energy is concentrated in less than 0.1% of its volume, right at its centre,” he says.

Dr Jones completed his PhD at Adelaide, studying the Galactic Centre magnetic field under the supervision of Dr Raymond Protheroe, Associate Professor of Physics at the University of Adelaide, and Dr Crocker, a former postdoctoral researcher at the University.

“The Milky Way just glows in radio waves and in gamma-rays produced by collisions of energetic particles, and is brightest near its centre. Knowing the magnetic field there helps us understand the source of the radio and gamma-rays better,” says Dr Protheroe.

The Australian Research Council provided funding for the project.

Dr Roland Crocker
Marie Curie Fellow
Max-Planck-Institute for Nuclear Physics
Phone: +49 6221 516 208
Mobile: +49 1765 333 8683

Dr Roland Crocker | Newswise Science News
Further information:
http://www.adelaide.edu

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>