Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists put a new spin on traditional information technology

30.08.2011
Sending information by varying the properties of electromagnetic waves has served humanity well for more than a century, but as our electronic chips steadily shrink, the signals they carry can bleed across wires and interfere with each other, presenting a barrier to further size reductions.

A possible solution could be to encode ones and zeros, not with voltage, but with electron spin, and researchers have now quantified some of the benefits this fresh approach might yield.

In a paper in the AIP's journal Applied Physics Letters, a team from the University of Rochester and the University of Buffalo has proposed a new communications scheme that would use silicon wires carrying a constant current to drive electrons from a transmitter to a receiver.

By changing its magnetization, a contact would inject electron spin (either up or down) into the current at the transmitter end.

Over at the receiver end, a magnet would separate the current based on the spin, and a logic device would register either a one or a zero. The researchers chose silicon wires because silicon's electrons hold onto their spin for longer than other semiconductors. The team calculated the bandwidth and power consumption of a model spin-communication circuit, and found it would transmit more information and use less power than circuits using existing techniques.

The researchers did find that the latency, or the time it takes information to travel from transmitter to receiver, was longer for the spin-communication circuit, but its other benefits mean the new scheme may one day shape the design of many emerging technologies.

Article: "Silicon spin communication" is published in Applied Physics Letters.

Authors: Hanan Dery (1,2), Yang Song (2), Pengke Li (1), and Igor Žutiæ (3).

(1) Department of Electrical and Computer Engineering, University of Rochester
(2) Department of Physics and Astronomy, University of Rochester
(3) Department of Physics, University of Buffalo, State University of New York

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>