Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists put a new spin on traditional information technology

30.08.2011
Sending information by varying the properties of electromagnetic waves has served humanity well for more than a century, but as our electronic chips steadily shrink, the signals they carry can bleed across wires and interfere with each other, presenting a barrier to further size reductions.

A possible solution could be to encode ones and zeros, not with voltage, but with electron spin, and researchers have now quantified some of the benefits this fresh approach might yield.

In a paper in the AIP's journal Applied Physics Letters, a team from the University of Rochester and the University of Buffalo has proposed a new communications scheme that would use silicon wires carrying a constant current to drive electrons from a transmitter to a receiver.

By changing its magnetization, a contact would inject electron spin (either up or down) into the current at the transmitter end.

Over at the receiver end, a magnet would separate the current based on the spin, and a logic device would register either a one or a zero. The researchers chose silicon wires because silicon's electrons hold onto their spin for longer than other semiconductors. The team calculated the bandwidth and power consumption of a model spin-communication circuit, and found it would transmit more information and use less power than circuits using existing techniques.

The researchers did find that the latency, or the time it takes information to travel from transmitter to receiver, was longer for the spin-communication circuit, but its other benefits mean the new scheme may one day shape the design of many emerging technologies.

Article: "Silicon spin communication" is published in Applied Physics Letters.

Authors: Hanan Dery (1,2), Yang Song (2), Pengke Li (1), and Igor Žutiæ (3).

(1) Department of Electrical and Computer Engineering, University of Rochester
(2) Department of Physics and Astronomy, University of Rochester
(3) Department of Physics, University of Buffalo, State University of New York

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>