Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists put a new spin on traditional information technology

30.08.2011
Sending information by varying the properties of electromagnetic waves has served humanity well for more than a century, but as our electronic chips steadily shrink, the signals they carry can bleed across wires and interfere with each other, presenting a barrier to further size reductions.

A possible solution could be to encode ones and zeros, not with voltage, but with electron spin, and researchers have now quantified some of the benefits this fresh approach might yield.

In a paper in the AIP's journal Applied Physics Letters, a team from the University of Rochester and the University of Buffalo has proposed a new communications scheme that would use silicon wires carrying a constant current to drive electrons from a transmitter to a receiver.

By changing its magnetization, a contact would inject electron spin (either up or down) into the current at the transmitter end.

Over at the receiver end, a magnet would separate the current based on the spin, and a logic device would register either a one or a zero. The researchers chose silicon wires because silicon's electrons hold onto their spin for longer than other semiconductors. The team calculated the bandwidth and power consumption of a model spin-communication circuit, and found it would transmit more information and use less power than circuits using existing techniques.

The researchers did find that the latency, or the time it takes information to travel from transmitter to receiver, was longer for the spin-communication circuit, but its other benefits mean the new scheme may one day shape the design of many emerging technologies.

Article: "Silicon spin communication" is published in Applied Physics Letters.

Authors: Hanan Dery (1,2), Yang Song (2), Pengke Li (1), and Igor Žutiæ (3).

(1) Department of Electrical and Computer Engineering, University of Rochester
(2) Department of Physics and Astronomy, University of Rochester
(3) Department of Physics, University of Buffalo, State University of New York

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>