Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists paint quantum electronics with beams of light


Chance effect of lab's fluorescent lights leads to discovery

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials called topological insulators.

This is a picture of an artist's rendition of optically-defined quantum circuits in a topological insulator.

Credit: Peter Allen

In contrast to using advanced nanofabrication facilities based on chemical processing of materials, this flexible technique allows for rewritable 'optical fabrication' of devices. This finding is likely to spawn new developments in emerging technologies such as low-power electronics based on the spin of electrons or ultrafast quantum computers.

The research is published today in the American Association for the Advancement of Science's new online journal Science Advances, where it is featured on the journal's front page.

"This observation came as a complete surprise," said David D. Awschalom, Liew Family Professor and deputy director in the Institute of Molecular Engineering at UChicago, and one of two lead researchers on the project. "It's one of those rare moments in experimental science where a seemingly random event -- turning on the room lights -- generated unexpected effects with potentially important impacts in science and technology."

The electrons in topological insulators have unique quantum properties that many scientists believe will be useful for developing spin-based electronics and quantum computers. However, making even the simplest experimental circuits with these materials has proved difficult because traditional semiconductor engineering techniques tend to destroy their fragile quantum properties. Even a brief exposure to air can reduce their quality.

In Science Advances, the researchers report the discovery of an optical effect that allows them to "tune" the energy of electrons in these materials using light, and without ever having to touch the material itself. They have used it to draw and erase p-n junctions -- one of the central components of a transistor -- in a topological insulator for the first time.

Like many advances in science, the path to this discovery had an unexpected twist.

"To be honest, we were trying to study something completely different," said Andrew Yeats, a graduate student in Awschalom's laboratory and the paper's lead author. "There was a slow drift in our measurements that we traced to a particular type of fluorescent lights in our lab. At first we were glad to be rid of it, and then it struck us -- our room lights were doing something that people work very hard to do in these materials."

The researchers went back to Bulley & Andrews, the contractor that renovated the lab space for more information about the lights. "I've never had a client so obsessed with the overhead lighting," said Frank Floss, superintendent for Bulley & Andrews Construction. "I could have never imagined how important it would turn out to be."

The researchers found that the surface of strontium titanate, the substrate material on which they had grown their samples, becomes electrically polarized when exposed to ultraviolet light, and their room lights happened to emit at just the right wavelength. The electric field from the polarized strontium titanate was leaking into the topological insulator layer, changing its electronic properties.

Awschalom and his colleagues found that by intentionally focusing beams of light on their samples, they could draw electronic structures that persisted long after the light was removed.

"It's like having a sort of quantum etch-a-sketch in our lab," he said. They also found that bright red light counteracted the effect of the ultraviolet light, allowing them to both write and erase. "Instead of spending weeks in the cleanroom and potentially contaminating our materials," said Awschalom, "now we can sketch and measure devices for our experiments in real time. When we're done, we just erase it and make something else. We can do this in less than a second."

To test whether the new technique might interfere with the unique properties of topological insulators, the team measured their samples in high magnetic fields. They found promising signatures of an effect called weak anti-localization, which arises from quantum interference between the different simultaneous paths electrons can take through a material when they behave as waves.

"One exciting aspect of this work is that it's noninvasive" said Nitin Samarth, Professor and Downsbrough Head of Physics at Penn State, and a lead researcher on the project. "Since the electrical polarization occurs in an adjacent material, and the effect persists in the dark, the topological insulator remains relatively undisturbed. With these fragile quantum materials, sometimes you have to use a light touch."

To better understand the physics behind the effect, the researchers conducted a number of control measurements which showed that the optical effect is not unique to topological insulators, but that it can act on other materials grown on strontium titanate as well.

"In a way, the most exciting aspect of this work is that it should be applicable to a wide range of nanoscale materials such as complex oxides, graphene, and transition metal dichalcogenides," said Awschalom.

"It's not just that it's faster and easier. This effect could allow electrical tuning of materials in a wide range of optical, magnetic and spectroscopic experiments where electrical contacts are extremely difficult or simply impossible."

Media Contact

Steve Koppes


Steve Koppes | EurekAlert!

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>