Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe super-massive black holes using Keck Observatory in Hawaii

14.12.2009
An international team of scientists has observed four super-massive black holes at the center of galaxies, which may provide new information on how these central black hole systems operate. Their findings are published in December's first issue of the journal Astronomy and Astrophysics.

These super-massive black holes at the center of galaxies are called active galactic nuclei. For the first time, the team observed a quasar with an active galactic nucleus, as part of the group of four, which is located more than a billion light years from Earth. The scientists used the two Keck telescopes on top of Mauna Kea in Hawaii. These are the largest optical/infrared telescopes in the world.

The team also used the United Kingdom Infrared Telescope (UKIRT) to follow up the Keck observations, to obtain current near-infrared images of the target galaxies.

"Astronomers have been trying to see directly what exactly is going on in the vicinity of these accreting super-massive black holes," said co-author Robert Antonucci, a UC Santa Barbara astrophysicist.

He explained that the nuclei of many galaxies show intense radiation from X-ray to optical, infrared, and radio, where the nucleus may exhibit a strong jet –– a linear feature carrying particles and magnetic energy out from a central super-massive black hole. Scientists believe these active nuclei are powered by accreting super-massive black holes. The accreting gas and dust are especially bright in the optical and infrared regions of the electromagnetic spectrum.

Scientists can now separate the emission from the regions outside the black hole from that in the very close vicinity of the black hole. This is the location of the most interesting physical process, the actual swallowing of matter by the black hole. "While not resolving this extremely small region directly, we can now better subtract the contribution from surrounding matter when we take a spectrum of the black hole and its surroundings, isolating the spectrum from the matter actually being consumed and lost forever by the hole," said Antonucci.

To observe such a distant object sharply enough in infrared wavelengths requires the use of a telescope having a diameter of about 100 meters or more. Instead of building such a large infrared telescope, which is currently impossible, a more practical way is to combine the beams from two or more telescopes that are roughly 100 meters apart. This method, used in radio astronomy for decades, is new for the infrared part of the spectrum. This type of instrument is called a long-baseline interferometer.

The Keck telescopes are separated by 85 meters and can be used as an interferometer. Combining the light from the telescopes allows astronomers to detect an interference pattern of the two beams and infer what the black hole vicinity looks like, explained first author Makoto Kishimoto, of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Kishimoto and Antonucci have a longstanding research collaboration, which began with Kishimoto's post-doctoral fellowship with Antonucci in the UCSB Department of Physics a decade ago. Antonucci points out that most of the credit for this current work goes to Kishimoto.

In 2003, astronomer Mark Swain at the Jet Propulsion Laboratory and his collaborators used the Keck Interferometer to observe the material accreting around one super-massive black hole, called NGC 4151. This is one of the brightest black holes in the optical and infrared wavelengths. The observations provided astronomers with the first direct clue about the inner region of a super-massive black hole system, said Antonucci.

"The results looked puzzling in 2003," said Kishimoto. "But with the new data and with more external information, we are quite sure of what we are seeing." According to the team's results, the Keck Interferometer has just begun to resolve the outer region of an active galactic nucleus's accreting gas, where co-existing dust grains are hot enough to evaporate, transitioning directly from a solid to a gas.

The W. M. Keck Observatory is a scientific partnership of the California Institute of Technology, the University of California, and NASA.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>