Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe super-massive black holes using Keck Observatory in Hawaii

14.12.2009
An international team of scientists has observed four super-massive black holes at the center of galaxies, which may provide new information on how these central black hole systems operate. Their findings are published in December's first issue of the journal Astronomy and Astrophysics.

These super-massive black holes at the center of galaxies are called active galactic nuclei. For the first time, the team observed a quasar with an active galactic nucleus, as part of the group of four, which is located more than a billion light years from Earth. The scientists used the two Keck telescopes on top of Mauna Kea in Hawaii. These are the largest optical/infrared telescopes in the world.

The team also used the United Kingdom Infrared Telescope (UKIRT) to follow up the Keck observations, to obtain current near-infrared images of the target galaxies.

"Astronomers have been trying to see directly what exactly is going on in the vicinity of these accreting super-massive black holes," said co-author Robert Antonucci, a UC Santa Barbara astrophysicist.

He explained that the nuclei of many galaxies show intense radiation from X-ray to optical, infrared, and radio, where the nucleus may exhibit a strong jet –– a linear feature carrying particles and magnetic energy out from a central super-massive black hole. Scientists believe these active nuclei are powered by accreting super-massive black holes. The accreting gas and dust are especially bright in the optical and infrared regions of the electromagnetic spectrum.

Scientists can now separate the emission from the regions outside the black hole from that in the very close vicinity of the black hole. This is the location of the most interesting physical process, the actual swallowing of matter by the black hole. "While not resolving this extremely small region directly, we can now better subtract the contribution from surrounding matter when we take a spectrum of the black hole and its surroundings, isolating the spectrum from the matter actually being consumed and lost forever by the hole," said Antonucci.

To observe such a distant object sharply enough in infrared wavelengths requires the use of a telescope having a diameter of about 100 meters or more. Instead of building such a large infrared telescope, which is currently impossible, a more practical way is to combine the beams from two or more telescopes that are roughly 100 meters apart. This method, used in radio astronomy for decades, is new for the infrared part of the spectrum. This type of instrument is called a long-baseline interferometer.

The Keck telescopes are separated by 85 meters and can be used as an interferometer. Combining the light from the telescopes allows astronomers to detect an interference pattern of the two beams and infer what the black hole vicinity looks like, explained first author Makoto Kishimoto, of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Kishimoto and Antonucci have a longstanding research collaboration, which began with Kishimoto's post-doctoral fellowship with Antonucci in the UCSB Department of Physics a decade ago. Antonucci points out that most of the credit for this current work goes to Kishimoto.

In 2003, astronomer Mark Swain at the Jet Propulsion Laboratory and his collaborators used the Keck Interferometer to observe the material accreting around one super-massive black hole, called NGC 4151. This is one of the brightest black holes in the optical and infrared wavelengths. The observations provided astronomers with the first direct clue about the inner region of a super-massive black hole system, said Antonucci.

"The results looked puzzling in 2003," said Kishimoto. "But with the new data and with more external information, we are quite sure of what we are seeing." According to the team's results, the Keck Interferometer has just begun to resolve the outer region of an active galactic nucleus's accreting gas, where co-existing dust grains are hot enough to evaporate, transitioning directly from a solid to a gas.

The W. M. Keck Observatory is a scientific partnership of the California Institute of Technology, the University of California, and NASA.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>