Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model physics of a key dark-energy probe

13.07.2011
Simulations improve characterization of cosmology’s ‘standard ruler’

Ohio State University researchers are leveraging powerful supercomputers to investigate one of the key observational probes of "dark energy," the mysterious energy form that is causing the expansion of the universe to accelerate over time.


Produced by the Sloan Digital Sky Survey, this three-dimensional map of the distribution of galaxies shows Earth at the center, and represents each galaxy with a single point. Large astronomical surveys, such as SDSS, rely upon a model of Baryon Acoustic Oscillations to provide a cosmological "standard ruler" for determining length scale. Ohio State University's Chris Orban and David Weinberg, Ph.D., have employed Ohio Supercomputer Center resources to simplify and better characterize that BAO model. Credit: M. Blanton and SDSS

The OSU project, led by Chris Orban, a graduate research fellow in physics at Ohio State's Center for Cosmology and Astro-Particle Physics, focuses on simulations created on Ohio Supercomputer Center (OSC) systems to simplify and better characterize a subtle dark matter clustering feature. The new model allows cosmologists to gain a more accurate understanding of certain aspects of large-scale structure, such as the effect of the expansion of the universe on the growth of density fluctuations.

"Knowing how the dark matter 'reacts' to the expansion of the universe is crucial for learning the most about dark energy and dark matter from large astronomical surveys like the Sloan Digital Sky Survey, of which OSU is a collaborating member," said Orban. "In particular, there is a subtle clustering feature seen in this data set called 'Baryon Acoustic Oscillations' (BAO), which turns out to be very useful for constraining cosmological parameters like the equation of state of dark energy."

The oscillations come from fluctuations in the distribution of hot plasma in the early universe; researchers can identify this feature by measuring the cosmic microwave background.

"The BAO signature gets imprinted on the dark matter very early on, but the feature changes over cosmic time, potentially biasing its use as a cosmological tool," Orban explained. "It's a complicated non-linear problem, and physicists are very fond of simplifying complicated problems to gain a more in-depth understanding. This is exactly what we did for the first time, in our paper, using N-body simulations."

"For current state-of-the-art astronomical surveys, the main non-linear effects that we investigate in the paper are negligible compared to other sources of error, but next-generation surveys will need to be far more sophisticated in this regard," said Orban's academic advisor, David Weinberg, Ph.D., who is a professor of astronomy at OSU and the project scientist for the Sloan Survey. "This places the utmost importance on making reliable and precise predictions for these non-linear effects, a task which cosmological N-body simulations are in many ways well-suited to do."

Since early 2009, Orban and Weinberg have employed nearly 200,000 processor-hours of computational time on the OSC's flagship Glenn Cluster and eight terabytes of storage space on its Mass Storage Environment. The Glenn Cluster offers researchers more than 9,600 Opteron cores, 24 terabytes of memory and a peak computational capability of 75 teraflops – which translates to 75 trillion calculations per second.

For software, the researchers employed the state-of-the-art Gadget-2 N-body code to calculate the trajectories of more than a hundred million particles, and set the initial conditions using the 2LPT code developed by their collaborators at New York University.

"This research project represents a fantastic conjunction of people and disciplines," observed Ashok Krishnamurthy, co-executive director of OSC. "It brought together professionals in the fields of physics, astronomy and computational science to produce impressive results that might not otherwise have come together for many years. OSC is proud to have contributed to these achievements."

Orban and Weinberg authored a paper on this research, "Self-similar Bumps and Wiggles: Isolating the Evolution of the BAO Peak with Power-law Initial Conditions," which is slated for publication in the journal Physical Review D.

"We're both pretty proud of the final product, which we've been working on for about two and a half years," Orban said. "Our production runs represent by far the largest set of cosmological simulations ever performed at The Ohio State University."

Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

Further reports about: Cluster N-body OSU Ohio Orban dark energy dark matter expansion of the universe

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>