Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists model physics of a key dark-energy probe

13.07.2011
Simulations improve characterization of cosmology’s ‘standard ruler’

Ohio State University researchers are leveraging powerful supercomputers to investigate one of the key observational probes of "dark energy," the mysterious energy form that is causing the expansion of the universe to accelerate over time.


Produced by the Sloan Digital Sky Survey, this three-dimensional map of the distribution of galaxies shows Earth at the center, and represents each galaxy with a single point. Large astronomical surveys, such as SDSS, rely upon a model of Baryon Acoustic Oscillations to provide a cosmological "standard ruler" for determining length scale. Ohio State University's Chris Orban and David Weinberg, Ph.D., have employed Ohio Supercomputer Center resources to simplify and better characterize that BAO model. Credit: M. Blanton and SDSS

The OSU project, led by Chris Orban, a graduate research fellow in physics at Ohio State's Center for Cosmology and Astro-Particle Physics, focuses on simulations created on Ohio Supercomputer Center (OSC) systems to simplify and better characterize a subtle dark matter clustering feature. The new model allows cosmologists to gain a more accurate understanding of certain aspects of large-scale structure, such as the effect of the expansion of the universe on the growth of density fluctuations.

"Knowing how the dark matter 'reacts' to the expansion of the universe is crucial for learning the most about dark energy and dark matter from large astronomical surveys like the Sloan Digital Sky Survey, of which OSU is a collaborating member," said Orban. "In particular, there is a subtle clustering feature seen in this data set called 'Baryon Acoustic Oscillations' (BAO), which turns out to be very useful for constraining cosmological parameters like the equation of state of dark energy."

The oscillations come from fluctuations in the distribution of hot plasma in the early universe; researchers can identify this feature by measuring the cosmic microwave background.

"The BAO signature gets imprinted on the dark matter very early on, but the feature changes over cosmic time, potentially biasing its use as a cosmological tool," Orban explained. "It's a complicated non-linear problem, and physicists are very fond of simplifying complicated problems to gain a more in-depth understanding. This is exactly what we did for the first time, in our paper, using N-body simulations."

"For current state-of-the-art astronomical surveys, the main non-linear effects that we investigate in the paper are negligible compared to other sources of error, but next-generation surveys will need to be far more sophisticated in this regard," said Orban's academic advisor, David Weinberg, Ph.D., who is a professor of astronomy at OSU and the project scientist for the Sloan Survey. "This places the utmost importance on making reliable and precise predictions for these non-linear effects, a task which cosmological N-body simulations are in many ways well-suited to do."

Since early 2009, Orban and Weinberg have employed nearly 200,000 processor-hours of computational time on the OSC's flagship Glenn Cluster and eight terabytes of storage space on its Mass Storage Environment. The Glenn Cluster offers researchers more than 9,600 Opteron cores, 24 terabytes of memory and a peak computational capability of 75 teraflops – which translates to 75 trillion calculations per second.

For software, the researchers employed the state-of-the-art Gadget-2 N-body code to calculate the trajectories of more than a hundred million particles, and set the initial conditions using the 2LPT code developed by their collaborators at New York University.

"This research project represents a fantastic conjunction of people and disciplines," observed Ashok Krishnamurthy, co-executive director of OSC. "It brought together professionals in the fields of physics, astronomy and computational science to produce impressive results that might not otherwise have come together for many years. OSC is proud to have contributed to these achievements."

Orban and Weinberg authored a paper on this research, "Self-similar Bumps and Wiggles: Isolating the Evolution of the BAO Peak with Power-law Initial Conditions," which is slated for publication in the journal Physical Review D.

"We're both pretty proud of the final product, which we've been working on for about two and a half years," Orban said. "Our production runs represent by far the largest set of cosmological simulations ever performed at The Ohio State University."

Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

Further reports about: Cluster N-body OSU Ohio Orban dark energy dark matter expansion of the universe

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>