Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make first discovery using revolutionary long wavelength demonstrator array

20.08.2009
Scientists from NRL's Space Science and Remote Sensing Divisions, in collaboration with researchers from the University of New Mexico (UNM) and the National Radio Astronomy Observatory (NRAO) located in Socorro, N.M., have generated the first scientific results from the Long Wavelength Demonstrator Array (LWDA).

The measurements were obtained during field tests and calibration of two prototype antennas for the much larger Long Wavelength Array (LWA), which will eventually consist of nearly 13,000 similar antennas.

Utilizing radio emissions from the approximately 300 year-old Cassiopeia A (Cas A) supernova remnant (SNR)—one of the brightest astronomical radio sources in the sky—to establish baseline measurements, NRL scientist and National Research Council (NRC) postdoctoral fellow Dr. Jake Hartman utilized the LWDA to confirm and extend a study initiated by fellow NRL-NRC postdoc Dr. Joseph Helmboldt.

Using NRAO's Very Large Array (VLA) radio telescope, Dr. Helmboldt's research showed that the gradually weakening Cas A displays signs of a "softer" smooth, secular decrease and an apparent shorter term variability at frequencies below 100 MHz.

"Cas A has long been known to be fading, but the slower, seemingly irregular decrease at frequencies lower than 100 MHz has remained controversial," said Dr Namir Kassim, astronomer and LWA project scientist, NRL. "Dr. Hartman's discovery reaffirms this supposition and provides strong support that more frequent time sampling will be needed to determine whether the shorter term variations contain a non-random component."

Dr. Helmboldt's measurements were able to significantly improve constraints on the smooth secular decrease, confirming earlier indications that the decrease was slower than originally determined several decades ago. He was also able to verify earlier indications of variations on shorter timescales, including the possibility that they might contain a sinusoidal component.

Scientifically, these new measurements taken by Dr. Hartman are significant because they must be explained by diffusive shock acceleration theory—which helps describe how the blast wave from a relatively recent supernova explosion like Cas A is able to accelerate relativistic particles and generate radio emission. The theory must account both for the relatively smooth, longer-term rate at which the emission is gradually fading, as well as the shorter-term variability that is likely related to the properties of the region into which the SNR is expanding.

"The result is exciting because it represents 'first science', and is increasingly intriguing as it is based on measurements from only two dipole antennas, as compared to the more than 13,000 that will eventually comprise the full LWA," said Dr. Paul Ray, astronomer, NRL. "For a project whose broader goals encompass engaging and training a next generation of young radio scientists we are proud that this first astronomical result emerged from the work of two postdocs, neither of whom were experts in this area of research."

Once completed, the LWA will provide an entirely novel view of the sky in the radio frequency range of 20-80 MHz, currently one of the most poorly explored regions of the electromagnetic spectrum in astronomy. The LWA will be able to make sensitive high-resolution images, scanning the sky rapidly for new and transient sources of radio waves that may represent the explosion of distant massive stars or detect emissions from planets outside of our own solar system and previously unknown objects or phenomena.

"We're now laying the infrastructure for the first LWA antenna station," said Joe Craig, LWA system engineer, UNM. "It's really an exciting period for everyone involved."

LWA will also provide an unparalleled measure of turbulence and waves in the Earth's ionosphere, together with unique diagnostics of phenomena manifested through the Sun-Earth connection also known as "Space Weather."

Dr. Hartman's work describing his LWDA-based measurements has been published as an LWA technical memorandum, while Dr. Helmboldt's paper on the secular decrease of Cas A, based on the combined VLA and LWDA data, will appear in the September 2009 issue of the Astronomical Journal. For more on the LWA project see: http://lwa.unm.edu.

The LWDA was funded by NRL and built by the Applied Research Laboratories of the University of Texas, Austin. Funding for the University of New Mexico-led LWA project is managed by the Office of Naval Research with research being co-sponsored by the Naval Research Laboratory, University of New Mexico, Los Alamos National Laboratory, Jet Propulsion Laboratory, Virginia Tech, and The University of Iowa with cooperation from the National Radio Astronomy Observatory. NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.

Daniel Parry | EurekAlert!
Further information:
http://www.nrl.navy.mil
http://lwa.unm.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>