Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists to Io: Your Volcanoes Are in the Wrong Place

05.04.2013
Jupiter's moon Io is the most volcanically active world in the Solar System, with hundreds of volcanoes, some erupting lava fountains up to 250 miles high.

However, concentrations of volcanic activity are significantly displaced from where they are expected to be based on models that predict how the moon's interior is heated, according to NASA and European Space Agency researchers.

Io is caught in a tug-of-war between Jupiter's massive gravity and the smaller but precisely timed pulls from two neighboring moons that orbit further from Jupiter – Europa and Ganymede. Io orbits faster than these other moons, completing two orbits every time Europa finishes one, and four orbits for each one Ganymede makes. This regular timing means that Io feels the strongest gravitational pull from its neighboring moons in the same orbital location, which distorts Io's orbit into an oval shape. This in turn causes Io to flex as it moves around Jupiter.

For example, as Io gets closer to Jupiter, the giant planet's powerful gravity deforms the moon toward it and then, as Io moves farther away, the gravitational pull decreases and the moon relaxes. The flexing from gravity causes tidal heating -- in the same way that you can heat up a spot on a wire coat hanger by repeatedly bending it, the flexing creates friction in Io's interior, which generates the tremendous heat that powers the moon's extreme volcanism.

The question remains regarding exactly how this tidal heating affects the moon's interior. Some propose it heats up the deep interior, but the prevailing view is that most of the heating occurs within a relatively shallow layer under the crust, called the asthenosphere. The asthenosphere is where rock behaves like putty, slowly deforming under heat and pressure.

"Our analysis supports the prevailing view that most of the heat is generated in the asthenosphere, but we found that volcanic activity is located 30 to 60 degrees East from where we expect it to be," said Christopher Hamilton of the University of Maryland, College Park. Hamilton, who is stationed at NASA's Goddard Space Flight Center in Greenbelt, Md., is lead author of a paper about this research published January 1 in Earth and Planetary Science Letters.

Hamilton and his team performed the spatial analysis using the a new, global geologic map of Io, produced by David Williams of Arizona State University, Tempe, Ariz., and his colleagues using data from NASA spacecraft. The map provides the most comprehensive inventory of Io's volcanoes to date, thereby enabling patterns of volcanism to be explored in unprecedented detail. Assuming that the volcanoes are located above where the most internal heating occurs, the team tested a range of interior models by comparing observed locations of volcanic activity to predicted tidal heating patterns.

"We performed the first rigorous statistical analysis of the distribution of volcanoes in the new global geologic map of Io," says Hamilton. "We found a systematic eastward offset between observed and predicted volcano locations that can't be reconciled with any existing solid body tidal heating models."

Possibilities to explain the offset include a faster than expected rotation for Io, an interior structure that permits magma to travel significant distances from where the most heating occurs to the points where it is able erupt on the surface, or a missing component in existing tidal heating models, like fluid tides from an underground magma ocean, according to the team.

The magnetometer instrument on NASA's Galileo mission detected a magnetic field around Io, suggesting the presence of a global subsurface magma ocean. As Io orbits Jupiter, it moves inside the planet's vast magnetic field. Researchers think this could induce a magnetic field in Io if it had a global ocean of electrically conducting magma.

"Our analysis supports a global subsurface magma ocean scenario as one possible explanation for the offset between predicted and observed volcano locations on Io," says Hamilton. "However, Io's magma ocean would not be like the oceans on Earth. Instead of being a completely fluid layer, Io's magma ocean would probably be more like a sponge with at least 20 percent silicate melt within a matrix of slowly deformable rock."

Tidal heating is also thought to be responsible for oceans of liquid water likely to exist beneath the icy crusts of Europa and Saturn's moon Enceladus. Since liquid water is a necessary ingredient for life, some researchers propose that life might exist in these subsurface seas if a useable energy source and a supply of raw materials are present as well. These worlds are far too cold to support liquid water on their surfaces, so a better understanding of how tidal heating works may reveal how it could sustain life in otherwise inhospitable places throughout the Universe.

"The unexpected eastward offset of the volcano locations is a clue that something is missing in our understanding of Io," says Hamilton. "In a way, that's our most important result. Our understanding of tidal heat production and its relationship to surface volcanism is incomplete. The interpretation for why we have the offset and other statistical patterns we observed is open, but I think we've enabled a lot of new questions, which is good."

Io's volcanism is so extensive that it gets completely resurfaced about once every million years or so, actually quite fast compared to the 4.5-billion-year age of the solar system. So in order to know more about Io's past, we have to understand its interior structure better, because its surface is too young to record its full history, according to Hamilton.

The research was funded by NASA, the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities, and the European Space Agency.

Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
Nancy.N.Jones@nasa.gov / William.A.Steigerwald@nasa.gov

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/solarsystem/features/io-volcanoes-displaced.html

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>