Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Hope to Get Glimpse of Adolescent Universe from Revolutionary Instrument-on-a-Chip

01.07.2011
Scientists know what the universe looked like when it was a baby. They know what it looks like today. What they don't know is how it looked in its youth.

Thanks to technological advances, however, scientists hope to complete the photo album and provide a picture of how the cosmos developed into the kind of place that could support life like that found on Earth.

They plan to gather these never-before-obtained insights with a potentially "game-changing" instrument that is expected to be 10,000 times more sensitive than the current state-of-the-art.

The instrument is being designed to gather data of objects so distant from Earth that they no longer can be observed in visible light, only in the infrared bands of the electromagnetic spectrum. In particular, this instrument, called a spectrometer, will measure the properties of the infrared light to identify the object’s composition and other physical properties.

Just as impressive, the aptly named MicroSpec would be able to perform these highly sensitive observations from a very small platform -- so small, in fact, that all its components would fit onto a silicon wafer measuring just four inches in diameter.

Now under development by engineers and scientists at the Goddard Space Flight Center in Greenbelt, Md., the instrument is a strong contender for future flight missions in astrophysics and Earth science, said astrophysicist Harvey Moseley, who is leading the instrument-development effort. "It's quite a new and, we think, revolutionary concept," he said. "If we can prove it, everyone will want it."

Stars to Hemoglobin

Although the technology could help answer a plethora of science questions, it is ideally suited for studying the evolution of the universe and by extension, humanity's place in it.

Past NASA missions, including the Goddard-developed Cosmic Background Explorer and the Wilkinson Microwave Anistropy Probe, studied the infant universe. They gathered information about the primordial light created during the universe's creation. Both detected tiny temperature differences, which pointed to density differences that ultimately gave rise to the first stars and galaxies formed 400,000 million years after the Big Bang.

However, scientists have yet to study these objects with great precision. They also have not studied light emitted by the life-sustaining elements created in these first stars and later distributed across the universe in stellar explosions.

"Right after the Big Bang, the only elements that were really present in any abundance were hydrogen and helium," Moseley said. "The formation of stars and the nuclear reaction that took place inside these first stars have created essentially all the elements that constitute the things that we see around here -- the carbon in our bodies and the iron and hemoglobin in our blood. All these elements were formed in the many generations of stars that have been born and have died since the Big Bang."

By building an instrument like MicroSpec, and studying this specific era in the universe's nearly 14-billion-year history, scientists will "get a very clear picture of how the universe developed into the kind of place that could support life like us," Moseley added.

Unprecedented Instrument

Not only is the science unprecedented, so is the instrument, said Wen-Ting Hsieh, a Goddard Detector Development Laboratory engineer who has been working with Moseley since 2009 to advance the technology in preparation for a future mission. "The most important thing is it is small and it's super-sensitive."

In essence, Moseley, Hsieh, and their NASA Jet Propulsion Laboratory and CalTech University collaborators have found a way to dramatically shrink the size of the instrument. Compared with traditional spectrometers, which typically are table sized, the entire MicroSpec package of components, including its detectors, optics, and filters, would all be arranged on a thin silicon wafer measuring about 400 microns in thickness -- four times the width of a human hair -- and four inches in diameter.

"The idea was to get everything closely integrated and you get devices that are higher performing," said Carl Stahle, a Goddard technologist and the new business lead for the Instrument Systems and Technology Division at Goddard. And because the components are assembled on silicon, MicroSpec can be mass-produced, just like the silicon chips used in computers and other electronic equipment.

Therefore, NASA could produce multiple devices and assemble them as one compact instrument. In addition to providing increased sensitivity, MicroSpec would reduce the amount of time to observe objects in the sky because more light-detection capabilities would be built into the instrument. "The key is understanding what you can do on the silicon wafer. That's your instrument on a chip," Stahle explained.

Also contributing to MicroSpec's increased sensitivity -- estimated to be 10,000 times better than current state-of-the-art instruments -- is the degree to which it would be cooled. To detect far infrared light, instruments must be cooled to frigid temperatures to prevent instrument-generated heat from swamping the faint infrared signal. Therefore, the colder the instrument, the better the signal it receives. Moseley and team plan to employ an advanced Goddard-developed cooling system that would chill MicroSpec to just a tenth of a degree above absolute zero (-459.67 degrees Fahrenheit).

The future looks good for MicroSpec, Stahle said. Its sensitivity and small size make it suitable for all types of missions, everything from large observatories, like the Hubble Space Telescope, to suborbital missions carried out on balloons and aircraft. "It's very flexible, adaptable. Any time we can get a factor-of-10 improvement in power, mass, and volume, we think it's great. But this instrument is promising orders of magnitude performance. That's almost unheard of. I think anyone would say that's extraordinary."

Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lori Keesey | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/adolescent-universe.html

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>