Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Glimpse Nanobubbles on Super Non-Stick Surfaces

26.02.2010
Could lead to design of water-shedding materials for applications in energy, medicine, and more

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have obtained the first glimpse of miniscule air bubbles that keep water from wetting a super non-stick surface. Detailed information about the size and shape of these bubbles — and the non-stick material the scientists created by “pock-marking” a smooth material with cavities measuring mere billionths of a meter — is being published online today in the journal Nano Letters.

“Our results explain how these nanocavities trap tiny bubbles which render the surface extremely water repellent,” said Brookhaven physicist and lead author Antonio Checco. The research could lead to a new class of non-stick materials for a range of applications, including improved-efficiency power plants, speedier boats, and surfaces that are resistant to contamination by germs.

Non-stick surfaces are important to many areas of technology, from drag reduction to anti-icing agents. These surfaces are usually created by applying coatings, such as Teflon, to smooth surfaces. But recently — taking the lead from observations in nature, notably the lotus leaf and some varieties of insects — scientists have realized that a bit of texture can help. By incorporating topographical features on surfaces, they’ve created extremely water repellant materials.

“We call this effect ‘superhydrophobicity,’” said Brookhaven physicist Benjamin Ocko. “It occurs when air bubbles remain trapped in the textured surfaces, thereby drastically reducing the area of liquid in contact with the solid.” This forces the water to ball up into pearl shaped drops, which are weakly connected to the surface and can readily roll off, even with the slightest incline.

“To get the first glimpse of nanobubbles on a superhydrophobic surface we created a regular array of more than a trillion nano-cavities on an otherwise flat surface, and then coated it with a wax-like surfactant,” said Charles Black, a physicist at Brookhaven’s Center for Functional Nanometerials.

This coated, nanoscale textured surface was much more water repellant than the flat surface alone, suggesting the existence of nanobubbles. However, because the nanoscale is not accessible using ordinary microscopes, little is known about these nanobubbles.

To unambiguously prove that these ultra-small bubbles were present, the Brookhaven team carried out x-ray measurements at the National Synchrotron Light Source. “By watching how the x-rays diffracted, or bounced off the surface, we are able to image extremely small features and show that the cavities were mostly filled with air,” said Brookhaven physicist Elaine DiMasi.

Checco added, “We were surprised that water penetrates only about 5 to 10 nanometers into the cavities — an amount corresponding to only 15 to 30 layers of water molecules — independent of the depth of the cavities. This provides the first direct evidence of the morphology of such small bubbles.”

According to the scientists’ observations, the bubbles are only about 10 nanometers in size — about ten thousand times smaller than the width of a single human hair. And the team’s results conclusively show that these tiny bubbles have nearly flat tops. This is in contrast to larger, micrometer-sized bubbles, which have a more rounded top.

“This flattened configuration is appealing for a range of applications because it is expected to increase hydrodynamic slippage past the nanotextured surface,” Checco said. “Moreover, the fact that water hardly penetrates into the nano-textures, even if an external pressure is applied to the liquid, implies that these nanobubbles are very stable.”

Therefore, in contrast to materials with larger, micrometer-sized textures, the surfaces fabricated by the Brookhaven team may exhibit more stable superhydrophobic properties.

“These findings provide a better understanding of the nanoscale aspects of superhydropobicity, which should help to improve the design of future superhydrophobic non-stick surfaces,” Checco said.

This research is funded by the DOE Office of Science. Tommy Hofmann, a former Brookhaven physicist now at Helmholtz Zentrum Berlin, also contributed to this work.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>