Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get set for simulated nuclear inspection

01.09.2014

Some 40 scientists and technicians from around the world will descend on Jordan in November to take part in a simulated on-site inspection of a suspected nuclear test site on the banks of the Dead Sea.

Playing the part of inspectors, the experts will have access to a wide range of sensor technologies to look for signs of whether a nuclear explosion has taken place. At the same time, other role-players representing the state under inspection will try to put them off their scent.

The aim of this elaborate exercise, as science writer Edwin Cartlidge explains in this month's Physics World, is to prepare for the on-site inspections foreseen under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Opened for signature in 1996, this agreement bans all signatory nations from carrying out nuclear tests anywhere on Earth or in space.

The CTBT has been signed by more than 180 nations to date, but to become legally binding all 44 countries that possessed nuclear technology in 1996 must sign it and then ratify it, which typically means that their parliaments must approve it in a vote. However, eight of those countries, including North Korea and the US, have still to do so.

... more about:
»CTBTO »IMS »IOP »Physics »evidence »gases »phenomena »simulated »technologies »waves

Until the CTBT gets the backing of all the relevant nations, scientists cannot perform the final and crucial part of the verification regime specified in the treaty: on-site inspection, which would be invoked following initial evidence of any nuclear testing provided by a global network of sensors known as the International Monitoring System (IMS).

In the article, Cartlidge explains in more detail the role that the IMS's 279 facilities currently play in detecting four types of physical phenomena than can provide evidence of a nuclear explosion having taken place.

Data produced by measuring these phenomena – seismic waves, radioactive nuclei, underwater sound waves and infrasonic waves – are continually sent in near real-time to the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) in Vienna, Austria, where they are pieced together and used to look for any suspicious or unnatural events.

"Unfortunately, the evidence from the IMS is not always enough to convince signatories of the CTBT that a nuclear test has taken place. The network did not, for example, detect any radionuclides following a test North Korea carried out in 2009, and it was nearly two months before stations in Japan and Russia picked up radioactive noble gases after [North Korea's] 2013 test," Cartlidge writes.

Once the experts arrive at the roughly 1000 km2 of mountainous desert and scrubland in Jordan, they will have access to almost all of the sensor technologies available to them under the terms of the CTBT, including ultraviolet light to search for vehicle tracks in the dirt, infrared radiation to hunt down the exact point of any possible explosion, and noble-gas detection systems to measure the telltale gases xenon and argon.

"While the treaty remains on hold, CTBTO scientists will continue to refine and test their monitoring techniques, ensuring that they are as ready as they can be should they finally be called upon to investigate what could be the explosion of a real nuclear weapon. "The exercise in Jordan should provide a stern test of that preparedness," Cartlidge concludes.

Also in this issue:

  • Pointless or profound? -- The search for "sterile" neutrinos
  • The ultimate job -- What it really takes to be CERN boss
  • Cosmic discovery -- How Einstein studied the steady state
###

Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to: http://physicsworld.com

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website physicsworld.com is updated regularly and contains daily physics news and regular audio and video content. Visit http://physicsworld.com.

2. For copies of the articles reviewed here contact Mike Bishop, IOP Publishing Senior Press Officer, tel: +44 (0)11 7930 1032, e-mail: michael.bishop@iop.org

3. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

Michael Bishop | Eurek Alert!

Further reports about: CTBTO IMS IOP Physics evidence gases phenomena simulated technologies waves

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>