Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find formula to uncover our planet's past and help predict its future

28.05.2009
Studies of climate evolution and the ecology of past-times are often hampered by lost information – lost variables needed to complete the picture have been long thought untraceable but scientists have created a formula which will fill in the gaps of our knowledge and will help predict the future.

A novel method of reconstructing missing data will shed new light on how and why our climate moved us on from ice ages to warmer periods as researchers will be able to calculate lost information and put together a more complete picture.

Similarly they will be able to tackle ecological studies that are currently incomplete or distorted. Why do populations of animals like rabbits and foxes fluctuate so dramatically? Which factors most heavily influence population decline and, eventually, lead to extinction?

Published in the June issue of New Journal of Physics (co-owned by the Institute of Physics and German Physical Society) the paper 'Recovering "lost" information in the presence of noise: Application to rodent-predator dynamics' offers a solution to the problem of reconstructing missing or lost information in studies of dynamical systems such as the Earth's climate or animal populations.

It could potentially uncover new findings on topical scientific issues such as climate change and the extreme population fluctuations in some animal species.

By developing a novel Hamiltonian approach to the problem, using a mathematical algorithm, assuming the dynamics of each system has unknown parameters and that the data are distorted by random fluctuations, the researchers from California and Lancaster were able to successfully recreate measurements in a study on a vole-mustelid community.

Many small mammalian species have cyclic population dynamics, periodically oscillating between large and small communities, a behavioral phenomenon which has puzzled ecologists for decades. Reconstructed data on such predator-prey dynamics could now give new insight into why some species suddenly decline.

Climate evolution is subject to similar cyclical variations, which could be uncovered by applying the method to measuring the distribution of isotopes in sediments taken from the ocean floor, potentially giving further insight into the reasons behind climate change.

As the researchers write, "The method will also be applicable quite generally to cases where some state variables could not be recorded." These could include, not only climate change and ecology, but also contexts such as populations at risk from epidemics and rocket motors for new space crew exploration vehicles.

Lena Weber | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>