Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Evidence for Subsurface ‘Great Lake’ on Europa

18.11.2011
In a finding of significance in the search for life beyond Earth, scientists have discovered what appears to be a body of liquid water the volume of the North American Great Lakes locked inside the icy shell of Jupiter’s moon Europa – which could represent a new potential habitat for life.

Many more such lakes exist throughout the shallow regions of Europa’s shell, the researchers predict in an online article for the journal Nature. Further increasing the potential for life, many of these lakes are covered by floating ice shelves that seem to be collapsing, providing a mechanism for transferring nutrients and energy between the surface and a vast ocean already thought to exist below the thick ice shell.

“The potential for exchange of material between the surface and subsurface is a big key for astrobiology,” says Wes Patterson, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., and a co-author of the study. “Europa’s subsurface harbors much of what we believe is necessary for life but chemical nutrients found at the surface are likely vital for driving biology.”

“One opinion in the scientific community has been, ‘If the ice shell is thick, that’s bad for biology – that it might mean the surface isn’t communicating with the underlying ocean,” adds Britney Schmidt, the paper’s lead author and a postdoctoral fellow at The University of Texas at Austin’s Institute for Geophysics. “Now we see evidence that it’s a thick ice shell that can mix vigorously, and new evidence for giant shallow lakes. That could make Europa and its ocean more habitable.”

The scientists focused on Galileo spacecraft images of two roughly circular, bumpy features on Europa’s surface called chaos terrains. Based on similar processes seen here on Earth – on ice shelves and under glaciers overlaying volcanoes – they developed a four-step model to explain how the features form on Europa. It resolves several conflicting observations, some of which seemed to suggest that the ice shell is thick and others that it is thin.

While one of the chaos terrains appears to be fully formed, the other might still be forming – an indication that Europa’s surface is still geologically active. “For quite some time, Europa geologists have been struggling figure out what these features are and how they form,” says APL’s Louise Prockter, a senior planetary scientist who has conducted numerous studies of Europa. “This is the first time that anyone has come up with an end-to-end model that explains what we see on the surface.”

The scientists have good reason to believe their model is correct, based on observations of Europa from the Galileo spacecraft and of Earth. Still, because the inferred lakes are several kilometers below the surface, the only true confirmation of their presence would come from a future spacecraft mission designed to probe the ice shell. Such a mission was rated as one of the highest priority flagship missions by the National Research Council’s recent Planetary Science Decadal Survey and is currently being studied by NASA.

“If we’re ever to send a landed mission to Europa, these areas would be great places to study,” Prockter says.

The paper, “Active formation of ‘chaos terrain’ over shallow subsurface water on Europa,” will appear as an advance online publication of Nature on Nov. 16. With Schmidt and Patterson, authors on the paper include Don Blankenship, senior research scientist at the Institute for Geophysics, and Paul Schenk, planetary scientist at the Lunar and Planetary Institute in Houston. The research was funded by NASA, the Institute for Geophysics at The University of Texas at Austin’s Jackson School of Geosciences, and the Vetlesen Foundation.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit www.jhuapl.edu

Michael Buckley | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>