Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Evidence for Subsurface ‘Great Lake’ on Europa

18.11.2011
In a finding of significance in the search for life beyond Earth, scientists have discovered what appears to be a body of liquid water the volume of the North American Great Lakes locked inside the icy shell of Jupiter’s moon Europa – which could represent a new potential habitat for life.

Many more such lakes exist throughout the shallow regions of Europa’s shell, the researchers predict in an online article for the journal Nature. Further increasing the potential for life, many of these lakes are covered by floating ice shelves that seem to be collapsing, providing a mechanism for transferring nutrients and energy between the surface and a vast ocean already thought to exist below the thick ice shell.

“The potential for exchange of material between the surface and subsurface is a big key for astrobiology,” says Wes Patterson, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., and a co-author of the study. “Europa’s subsurface harbors much of what we believe is necessary for life but chemical nutrients found at the surface are likely vital for driving biology.”

“One opinion in the scientific community has been, ‘If the ice shell is thick, that’s bad for biology – that it might mean the surface isn’t communicating with the underlying ocean,” adds Britney Schmidt, the paper’s lead author and a postdoctoral fellow at The University of Texas at Austin’s Institute for Geophysics. “Now we see evidence that it’s a thick ice shell that can mix vigorously, and new evidence for giant shallow lakes. That could make Europa and its ocean more habitable.”

The scientists focused on Galileo spacecraft images of two roughly circular, bumpy features on Europa’s surface called chaos terrains. Based on similar processes seen here on Earth – on ice shelves and under glaciers overlaying volcanoes – they developed a four-step model to explain how the features form on Europa. It resolves several conflicting observations, some of which seemed to suggest that the ice shell is thick and others that it is thin.

While one of the chaos terrains appears to be fully formed, the other might still be forming – an indication that Europa’s surface is still geologically active. “For quite some time, Europa geologists have been struggling figure out what these features are and how they form,” says APL’s Louise Prockter, a senior planetary scientist who has conducted numerous studies of Europa. “This is the first time that anyone has come up with an end-to-end model that explains what we see on the surface.”

The scientists have good reason to believe their model is correct, based on observations of Europa from the Galileo spacecraft and of Earth. Still, because the inferred lakes are several kilometers below the surface, the only true confirmation of their presence would come from a future spacecraft mission designed to probe the ice shell. Such a mission was rated as one of the highest priority flagship missions by the National Research Council’s recent Planetary Science Decadal Survey and is currently being studied by NASA.

“If we’re ever to send a landed mission to Europa, these areas would be great places to study,” Prockter says.

The paper, “Active formation of ‘chaos terrain’ over shallow subsurface water on Europa,” will appear as an advance online publication of Nature on Nov. 16. With Schmidt and Patterson, authors on the paper include Don Blankenship, senior research scientist at the Institute for Geophysics, and Paul Schenk, planetary scientist at the Lunar and Planetary Institute in Houston. The research was funded by NASA, the Institute for Geophysics at The University of Texas at Austin’s Jackson School of Geosciences, and the Vetlesen Foundation.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit www.jhuapl.edu

Michael Buckley | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>