Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Explore the Future of High-Energy Physics

09.02.2010
In a 1954 speech to the American Physical Society, the University of Chicago’s Enrico Fermi fancifully envisioned a particle accelerator that encircled the globe. Such would be the ultimate theoretical outcome, Fermi surmised, of the quest for the ever-more powerful accelerators needed to discover new laws of physics.

“How much energy you can put into a particle per meter corresponds directly to how big the machine is,” says Steven Sibener, the Carl William Eisendrath Professor in Chemistry and the James Franck Institute at UChicago. This means that future accelerators must either grow to inconceivable sizes, at great costs, or they must somehow pump far more energy into each particle per meter of acceleration than modern technology will allow.

Sibener and Lance Cooley, AB’86, of the Fermi National Accelerator Laboratory, are working on the latter option with $1.5 million in funding from the U.S. Department of Energy. They aim to improve the efficiency of superconducting radio frequency (SRF) cavities made of niobium to accelerate beams of subatomic particles in the next generation of high-energy physics experiments.

The result could be accelerators powerful enough to open new frontiers in physics without the need for a massive increase in size.

A key to such efforts is niobium, a metallic element that becomes superconducting at very low temperatures. In fact, niobium’s superconducting characteristics are the best among the elements, providing the capacity to carry thousands of times more electric current than normal conductivity through copper. When highly pure, niobium also efficiently sheds any heat generated at flaws and defects to its cryogenic coolant. Niobium SRF cavities thus will comprise the heart of future particle accelerators, including the proposed International Linear Collider.

Enabling collider technology

“The niobium superconducting cavity is enabling technology for anything that is high-power, high-energy, or high-intensity for linear colliders,” says Cooley, the SRF Materials Group Leader at Fermilab. Cooley works with niobium cooled to 2 Kelvin (minus-455.8 degrees Fahrenheit) to maximize its superconducting characteristics. “We use superconductors because it’s friction-free electricity, which saves on the operating wall-plug power,” he says.

As an undergraduate at UChicago in the 1980s, Cooley conducted research for his senior project in the laboratory of Thomas Rosenbaum, Provost and the John T. Wilson Distinguished Service Professor in Physics. It was then that Cooley became interested in superconductivity. His interest in Fermilab and its accelerators was motivated by another UChicago faculty member, Professor Emeritus and Nobel Laureate James Cronin. Cooley arrived at Fermilab in 2007, and soon after, met Sibener to discuss niobium surface chemistry at the recommendation of mutual colleagues.

Pushing particle beams

Niobium has assumed greater importance in plans for the next round of linear colliders. The current generation of ring colliders, including Fermilab’s Tevatron and Europe’s newly operating Large Hadron Collider, use thousands of niobium-titanium superconducting magnets to steer and focus their beams of charged particles, which travel in great loops before being steered into collisions that can reveal fundamental properties of matter. Cavities are a small part of these machines, providing a momentary push to the particles each time they orbit the ring.

But linear colliders, including Stanford’s current linear accelerator, Fermilab’s proposed Project X, and the proposed ILC, string together thousands of cavities into one long line. The resulting linear accelerator creates an immense electric field to push the particle beams toward their collision in a single pass, without any need for steering and recirculating them.

The emergence of niobium SRF cavity technology over the past 20 years makes it possible for each resonating cavity to utilize superconductivity to produce high-power output through low-power input, with an estimated gain in quality factor of 100,000 over Stanford’s copper cavities. But many aspects of the system are not yet optimal.

Niobium is processed according to laboratory recipes that could benefit from a firm grounding in materials science, Cooley says. “Just how precisely a given recipe is followed depends on laboratory culture, attention to detail by individual operators, arrangement of tasks based on what is perceived to be important, and so on,” Cooley says. “The true impact of different processing steps is just beginning to emerge as the university scientists like Steve step in and produce basic understanding.”

The microscopes in Sibener’s laboratory enable researchers to observe the behavior of individual atoms. With the earlier seed grant, Sibener’s team found that niobium’s reaction with oxygen produced a variety of surface oxides and defects that suggested to Cooley and others explanations of observed changes in real-world SRF cavities.

“This is some of the purest niobium you can find in the world, actually,” says Sibener, displaying a mirror-like wafer of the material in his office at the Gordon Center for Integrative Science. His research group will closely examine the material to determine exactly which oxides and defects at the surface of niobium crystals lead to loss of superconductivity under extreme conditions.

“If the Fermilab-UChicago collaboration is successful,” says Cooley, “it will allow new types of accelerators to be built at great cost savings.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>