Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Explore the Future of High-Energy Physics

In a 1954 speech to the American Physical Society, the University of Chicago’s Enrico Fermi fancifully envisioned a particle accelerator that encircled the globe. Such would be the ultimate theoretical outcome, Fermi surmised, of the quest for the ever-more powerful accelerators needed to discover new laws of physics.

“How much energy you can put into a particle per meter corresponds directly to how big the machine is,” says Steven Sibener, the Carl William Eisendrath Professor in Chemistry and the James Franck Institute at UChicago. This means that future accelerators must either grow to inconceivable sizes, at great costs, or they must somehow pump far more energy into each particle per meter of acceleration than modern technology will allow.

Sibener and Lance Cooley, AB’86, of the Fermi National Accelerator Laboratory, are working on the latter option with $1.5 million in funding from the U.S. Department of Energy. They aim to improve the efficiency of superconducting radio frequency (SRF) cavities made of niobium to accelerate beams of subatomic particles in the next generation of high-energy physics experiments.

The result could be accelerators powerful enough to open new frontiers in physics without the need for a massive increase in size.

A key to such efforts is niobium, a metallic element that becomes superconducting at very low temperatures. In fact, niobium’s superconducting characteristics are the best among the elements, providing the capacity to carry thousands of times more electric current than normal conductivity through copper. When highly pure, niobium also efficiently sheds any heat generated at flaws and defects to its cryogenic coolant. Niobium SRF cavities thus will comprise the heart of future particle accelerators, including the proposed International Linear Collider.

Enabling collider technology

“The niobium superconducting cavity is enabling technology for anything that is high-power, high-energy, or high-intensity for linear colliders,” says Cooley, the SRF Materials Group Leader at Fermilab. Cooley works with niobium cooled to 2 Kelvin (minus-455.8 degrees Fahrenheit) to maximize its superconducting characteristics. “We use superconductors because it’s friction-free electricity, which saves on the operating wall-plug power,” he says.

As an undergraduate at UChicago in the 1980s, Cooley conducted research for his senior project in the laboratory of Thomas Rosenbaum, Provost and the John T. Wilson Distinguished Service Professor in Physics. It was then that Cooley became interested in superconductivity. His interest in Fermilab and its accelerators was motivated by another UChicago faculty member, Professor Emeritus and Nobel Laureate James Cronin. Cooley arrived at Fermilab in 2007, and soon after, met Sibener to discuss niobium surface chemistry at the recommendation of mutual colleagues.

Pushing particle beams

Niobium has assumed greater importance in plans for the next round of linear colliders. The current generation of ring colliders, including Fermilab’s Tevatron and Europe’s newly operating Large Hadron Collider, use thousands of niobium-titanium superconducting magnets to steer and focus their beams of charged particles, which travel in great loops before being steered into collisions that can reveal fundamental properties of matter. Cavities are a small part of these machines, providing a momentary push to the particles each time they orbit the ring.

But linear colliders, including Stanford’s current linear accelerator, Fermilab’s proposed Project X, and the proposed ILC, string together thousands of cavities into one long line. The resulting linear accelerator creates an immense electric field to push the particle beams toward their collision in a single pass, without any need for steering and recirculating them.

The emergence of niobium SRF cavity technology over the past 20 years makes it possible for each resonating cavity to utilize superconductivity to produce high-power output through low-power input, with an estimated gain in quality factor of 100,000 over Stanford’s copper cavities. But many aspects of the system are not yet optimal.

Niobium is processed according to laboratory recipes that could benefit from a firm grounding in materials science, Cooley says. “Just how precisely a given recipe is followed depends on laboratory culture, attention to detail by individual operators, arrangement of tasks based on what is perceived to be important, and so on,” Cooley says. “The true impact of different processing steps is just beginning to emerge as the university scientists like Steve step in and produce basic understanding.”

The microscopes in Sibener’s laboratory enable researchers to observe the behavior of individual atoms. With the earlier seed grant, Sibener’s team found that niobium’s reaction with oxygen produced a variety of surface oxides and defects that suggested to Cooley and others explanations of observed changes in real-world SRF cavities.

“This is some of the purest niobium you can find in the world, actually,” says Sibener, displaying a mirror-like wafer of the material in his office at the Gordon Center for Integrative Science. His research group will closely examine the material to determine exactly which oxides and defects at the surface of niobium crystals lead to loss of superconductivity under extreme conditions.

“If the Fermilab-UChicago collaboration is successful,” says Cooley, “it will allow new types of accelerators to be built at great cost savings.”

Steve Koppes | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>



Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

More VideoLinks >>>