Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists divide magnetic vortices into collectivists and individualists

04.04.2016

In manganese monosilicide (MnSi), microscopic magnetic vortices - skyrmions - may behave as "collectivists" or "individuals", i.e. they are able to create a single structure, or they can also split up individually. These are the findings of scientists from MIPT and Prokhorov General Physics Institute of RAS. Studying the behaviour of skyrmions will help to create unique quantum devices based on new physical principles.

Manganese monosilicide is a model object for spintronics - a branch of quantum electronics to study the possibility of controlling spin-polarized currents (conventional radio and electronic devices use non-polarized charge carriers).


a) Skyrmions -- magnetic vortices named after the British physicist Tony Skyrme. They are special formations of magnetization vectors: in the center the vector is oriented perpendicular to the surface and at the edges they form a structure which resembles a vortex. The magnetization vector is linked to the mutual arrangement of electron spins (the quantum characteristics of elementary particles) of individual atoms. b) Periodic vortex magnetic structure in manganese monosilicide MnSi.

Image source: Y. Nii et al. Uniaxial stress control of skyrmion phase. Nature Communications

Spintronics-based devices, which use stable magnetic states as information bits, will help scientists to develop faster and more compact processors with low levels of power consumption, and fast and reliable non-volatile memory. This is why scientists are carefully studying the electronic and magnetic properties of materials with exotic magnetic structures.

Theorists are not yet able to fully explain the unusual magnetic properties of manganese monosilicide. For example, at very low temperatures (approximately -245C) the external magnetic field inside a manganese monosilicide crystal "rotates" the electron spins into a complex arrangement of tiny magnetic vortices, or skyrmions.

The structure formed by the vortices resembles a honeycomb, with cells that are approximately 18 nanometres wide. According to theory, these structures - skyrmion lattices - can only be stable in two dimensions (in thin films); however skyrmion lattices are also observed experimentally in high quality single crystals of MnSi.

In order to use a skyrmion for practical purposes, scientists need to know whether the periodic magnetic structure consists of individual skyrmions (see image) that can be examined independently of one another, or forms a more complex magnetic structure which depends on the direction of the crystal and cannot be divided into separate vortices.

In a study published in Scientific Reports, which is part of the Nature Publishing Group, scientists from MIPT and GPI RAS succeeded in measuring the resistivity of solid manganese monosilicide to a very high degree of accuracy (~ 10-9 Ohm*cm) depending on the temperature and direction of the magnetic field. As noted by one of the authors of the paper, Prof. Vladimir Glushkov, "in magnetic metals, carrier scattering depends on the orientation of the magnetic structure in relation to the crystal lattice and it is normally strongly anisotropic.

However, the connection between the magnetic and crystal structures may be lost if the moments in the vortex are rotated, due to their high number (a cross-section of a vortex has more than 200 magnetic moments) and their change in direction. Therefore, an experiment to measure the angular dependence of magnetic resistance allows us to obtain information on the anisotropy of the system, which is not possible in direct structural studies".

The experiment showed that in a certain range of temperatures and magnetic fields the resistivity of MnSi in a state with magnetic vortices, does not depend on the direction of the magnetic field, unlike other magnetic states (conical or uniformly magnetized). Furthermore, this region is surrounded by another skyrmion phase with significant anisotropy.

"Our experiment has revealed a clear distinction between the two different states of the skyrmion phase," said Prof. Sergey Demishev. "In simple terms, this experimental fact means that MnSi has two types of skyrmion lattices with a different physical nature. The area with isotropic resistance corresponds to the skyrmion lattice formed as a result of the condensation of individual magnetic vortices. The surrounding pocket which extends in the direction H||[001] is a complex anisotropic magnetic phase which is not able to break down into individual quasi-particles - skyrmions. Observations of a skyrmion lattice consisting of individual vortices confirm the profound analogy with type II superconductors, the mixed state of which is formed by Abrikosov-type vortices".

From a practical point of view, individual skyrmions can be used to transmit and store information and perform various logical operations. Magnetic vortices in existing specially prepared film structures - nanopillars, are significantly larger, and occur as a result of a specific mode of magnetic fluctuations in a limited area. Therefore, spintronics, which is based on the use of individual quasi-particles or skyrmions, will open up new prospects for miniaturizing devices and will reduce control currents. The only thing that physicists need to do now is to find materials similar to high-temperature superconductors, in which tiny magnetic vortices will be stable at room temperatures.

Media Contact

Valerii Roizen
press@mipt.ru
929-992-2721

 @phystech

http://mipt.ru/en/ 

Valerii Roizen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>