Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key molecules in the interstellar space for the formation of basic life structures

19.09.2008
A team of scientists led by researchers from the Instituto Astrofísica de Canarias (IAC) has succeeded in identifying naphthalene, one of the most complex molecules yet discovered in the interstellar medium.

The detection of this molecule suggests that a large number of the key components in prebiotic terrestrial chemistry could have been present in the interstellar matter from which the Solar System was formed. IAC researchers Susana Iglesias Groth, Arturo Manchado and Aníbal García, in collaboration with Jonay González (Paris Observatory) and David Lambert (University of Texas) have just published these results in Astrophysical Journal Letters.

The naphthalene was discovered in a star formation region in the constellation Perseus, in the direction of the star Cernis 52. “We have detected the presence of the naphthalene cation in a cloud of interstellar matter located 700 lightyears from the Earth”, says IAC researcher Susana Iglesias Groth. The spectral bands found in this consstellation coincide with laboratory measurements of the naphthalene cation.

Iglesias Groth further adds, “we aim to investigate whether other, more complex, hydrocarbons exist in the same region, including aminoacids”. When subjected to ultraviolet radiation and combined with water and ammonium, both very abundant in the interstellar medium, naphthalene reacts and is capable of producing a wide variety of aminoacids and naphthaloquinones, precursor molecules to vitamins.

All these molecules play a fundamental role in the development of life as we know it on Earth. In fact, naphthalene has been found in meteorites that continue to fall to the surface of the Earth, and which fell with much greater intensity in epochs preceding the appearance of life.

The work of these researchers also enables us to understand one of the most intriguing problems in interstellar medium spectroscopy. For the past 80 years, the existence has been known of hundreds of spectroscopic bands (the so-called “diffuse bands”) associated with interstellar matter, but the identification of the agent causing them has remained a mystery.

“Our results show that polycyclic aromatic hydrocarbons such as naphthalene are responsible for the diffuse bands and should be present throughout the interstellar medium”, says Iglesias Groth.

Article in “Astrophysical Journal Letters”, 685, L55-L58: "Evidence for the naphthalene cation in a region of the interstellar medium with anomalous microwave emission".

S. Iglesias Groth, A. Manchado, A. García Hernández. Instituto de Astrofísica de Canarias
J. I. González Hernández. Paris Observatory
D. L. Lambert. McDonald Observatory, University of Texas

Nadjejda Vicente Cabañas | alfa
Further information:
http://www.iac.es/divulgacion.php?op1=16&id=545&lang=en

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>