Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover key molecules in the interstellar space for the formation of basic life structures

A team of scientists led by researchers from the Instituto Astrofísica de Canarias (IAC) has succeeded in identifying naphthalene, one of the most complex molecules yet discovered in the interstellar medium.

The detection of this molecule suggests that a large number of the key components in prebiotic terrestrial chemistry could have been present in the interstellar matter from which the Solar System was formed. IAC researchers Susana Iglesias Groth, Arturo Manchado and Aníbal García, in collaboration with Jonay González (Paris Observatory) and David Lambert (University of Texas) have just published these results in Astrophysical Journal Letters.

The naphthalene was discovered in a star formation region in the constellation Perseus, in the direction of the star Cernis 52. “We have detected the presence of the naphthalene cation in a cloud of interstellar matter located 700 lightyears from the Earth”, says IAC researcher Susana Iglesias Groth. The spectral bands found in this consstellation coincide with laboratory measurements of the naphthalene cation.

Iglesias Groth further adds, “we aim to investigate whether other, more complex, hydrocarbons exist in the same region, including aminoacids”. When subjected to ultraviolet radiation and combined with water and ammonium, both very abundant in the interstellar medium, naphthalene reacts and is capable of producing a wide variety of aminoacids and naphthaloquinones, precursor molecules to vitamins.

All these molecules play a fundamental role in the development of life as we know it on Earth. In fact, naphthalene has been found in meteorites that continue to fall to the surface of the Earth, and which fell with much greater intensity in epochs preceding the appearance of life.

The work of these researchers also enables us to understand one of the most intriguing problems in interstellar medium spectroscopy. For the past 80 years, the existence has been known of hundreds of spectroscopic bands (the so-called “diffuse bands”) associated with interstellar matter, but the identification of the agent causing them has remained a mystery.

“Our results show that polycyclic aromatic hydrocarbons such as naphthalene are responsible for the diffuse bands and should be present throughout the interstellar medium”, says Iglesias Groth.

Article in “Astrophysical Journal Letters”, 685, L55-L58: "Evidence for the naphthalene cation in a region of the interstellar medium with anomalous microwave emission".

S. Iglesias Groth, A. Manchado, A. García Hernández. Instituto de Astrofísica de Canarias
J. I. González Hernández. Paris Observatory
D. L. Lambert. McDonald Observatory, University of Texas

Nadjejda Vicente Cabañas | alfa
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>