Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover concealed glaciers on Mars at mid-latitudes

24.11.2008
Vast Martian glaciers of water ice under protective blankets of rocky debris persist today at much lower latitudes than any ice previously identified on Mars, says new research using ground-penetrating radar on NASA's Mars Reconnaissance Orbiter.

Because water is one of the primary requirements for life as we know it, finding large new reservoirs of frozen water on Mars is an encouraging sign for scientists searching for life beyond Earth.

The concealed glaciers extend for tens of miles from edges of mountains or cliffs and are up to one-half mile thick. A layer of rocky debris covering the ice may have preserved the glaciers as remnants from an ice sheet covering middle latitudes during a past ice age.

"Altogether, these glaciers almost certainly represent the largest reservoir of water ice on Mars that's not in the polar caps. Just one of the features we examined is three times larger than the city of Los Angeles, and up to one-half-mile thick, and there are many more," said John W. Holt of The University of Texas at Austin's Jackson School of Geosciences, lead author of a report on the radar observations in the Nov. 21 issue of the journal Science.

"In addition to their scientific value, they could be a source of water to support future exploration of Mars," said Holt.

The gently sloping aprons of material around taller features have puzzled scientists since NASA's Viking orbiters revealed them in the 1970s. One theory contended they were flows of rocky debris lubricated by a little ice. The features reminded Holt of massive ice glaciers detected under rocky coverings in Antarctica, where he has extensive experience using airborne geophysical instruments such as radar to study Antarctic ice sheets.

The Shallow Radar instrument on the Mars Reconnaissance Orbiter provided an answer to this Martian puzzle, indicating the features contain large amounts of ice.

"These results are the smoking gun pointing to the presence of large amounts of water ice at these latitudes," said Ali Safaeinili, a shallow-radar instrument team member with NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The radar's evidence for water ice comes in multiple ways. The radar echoes received by the orbiter while passing over these features indicate that radio waves pass through the apron material and reflect off a deeper surface below without significant loss in strength, as expected if the aprons are thick ice under a relatively thin covering.

The radar does not detect reflections from the interior of these deposits as would occur if they contained significant rock debris. Finally, the apparent velocity of radio waves passing through the apron is consistent with a composition of water ice.

Developers of the Shallow Radar had the mid-latitude aprons in mind, along with Mars' polar-layered deposits, long before the instrument reached Mars in 2006.

"We developed the instrument so it could operate on this kind of terrain," said Roberto Seu of Sapienza University of Rome, leader of the instrument science team. "It is now a priority to observe other examples of these aprons to determine whether they are also ice."

The buried glaciers reported by Holt and 11 co-authors lie in the Hellas Basin region of Mars' southern hemisphere. The radar has also detected similar-appearing aprons extending from cliffs in the northern hemisphere.

"There's an even larger volume of water ice in the northern deposits," said the Jet Propulsion Laboratory's Jeffrey J. Plaut, who reported their presence at a science conference earlier this year. "The fact that these features are in the same latitude bands—about 35 to 60 degrees—in both hemispheres points to a climate-driven mechanism for explaining how they got there."

The rocky-debris blanket topping the glaciers has apparently protected the ice from vaporizing as it would if exposed to the atmosphere at these latitudes.

"A key question is 'How did the ice get there in the first place?'" said James W. Head of Brown University.

"The tilt of Mars' spin axis sometimes gets much greater than it is now, and climate modeling tells us that ice sheets could cover mid-latitude regions of Mars during those high-tilt periods," said Head. He believes the buried glaciers make sense as preserved fragments from an ice age millions of years ago.

"On Earth," said Head, "such buried glacial ice in Antarctica preserves the record of traces of ancient organisms and past climate history."

J.B. Bird | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: Antarctica Earth Mars Martian Orbiter Propulsion Reconnaissance ice age ice sheet radio waves water ice

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>