Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover 45 new radioisotopes in 4 days

09.06.2010
The world’s most powerful beam of heavy ions has enabled Japanese scientists and their international collaborators to uncover 45 new neutron-rich radioisotopes in a region of the nuclear chart never before explored.

The world’s most powerful beam of heavy ions has enabled Japanese scientists and their international collaborators to uncover 45 new neutron-rich radioisotopes in a region of the nuclear chart never before explored. In only four days, a team of researchers at the RIKEN Nishina Center for Accelerator Based Science (RNC) have identified more new radioisotopes than the world’s scientists discover in an average year.

Radioactive isotopes (RI) or radioisotopes, unstable chemical elements with either more or fewer neutrons than their stable counterparts, open a door onto a world of nuclear physics where standard laws break down and novel phenomena emerge.

The RNC’s Radioactive Isotope Beam Factory (RIBF) was created to explore this world, boasting an RI beam intensity found nowhere else in the world. Accelerated to 70% the speed of light using RIBF’s Superconducting Ring Cyclotron, uranium-238 nuclei are smashed into beryllium and lead targets to produce an array of exotic radioisotopes believed to play a central role in the origins of elements in our universe.

To collect, separate and identify these isotopes, the researchers made use of BigRIPS, an RI beam separator whose powerful superconducting magnets have been carefully tuned to detect even the rarest phenomena under low-background conditions. Radioisotopes discovered using BigRIPS span the spectrum from manganese (Z = 25) to barium (Z = 56) and include highly sought-after nuclei such as palladium-128, whose “magic number” of neutrons grants it surprisingly high stability.

While greatly expanding our knowledge of nuclear physics, the newly-discovered radioisotopes provide essential clues about the origins of atoms in our universe. Further improvements at RIBF promise to dramatically boost heavy-ion beams to more than 1000 times their current intensities, unleashing thousands of new radioisotopes and heralding a new era in high-energy nuclear physics.

For more information, please contact:

Dr. Toshiyuki Kubo
Dr. Naohito Inabe
Dr. Tetsuya Ohnishi
Research Instruments Group
RIKEN Nishina Center for Accelerator Based Science
Tel: +81-(0)48-467-9696 / Fax: +81-(0)48-461-5301
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp
About RIKEN Nishina Center for Accelerator Based Science
Named after the father of modern physics in Japan, Yoshio Nishina, the RIKEN Nishina Center for Accelerator Based Science (RNC) carries on a long tradition of pioneering accelerator science, boasting the world’s most powerful facilities for heavy ion physics. Since its inauguration in 2006, these facilities have drawn the attention of nuclear physicists around the globe with their promise to reveal a world of physics that exists only in the hottest stars, and in earliest stages of our universe.

Using its world class facilities, the RNC has set out to tackle two main goals: firstly, to greatly expand our knowledge of the nuclear world into regions of the nuclear chart presently beyond our grasp, and secondly, to apply this knowledge to other fields such as nuclear chemistry, bio and medical science, and materials science. Through international collaborations with researchers around the world, the center is uniquely positioned to succeed in achieving these goals in the years to come.

About Radioactive Isotope Beam Factory

Central to achieving the RNC’s core missions is the Radioactive Isotope Beam Factory (RIBF), a next-generation heavy-ion accelerator facility located at the Wako campus of RIKEN, Japan’s flagship research organization. Construction on the facility, which began in 1997, added to an existing world-class heavy-ion accelerator complex two more ring cyclotrons and the world’s first superconducting ring cyclotron, as well as a powerful superconducting fragment separator known as BigRIPS. With the new systems in place, the facility is able to accelerate beams of any element up to uranium to 70% the speed of light. By smashing these nuclei into beryllium and lead targets to knock out neutrons and protons, researchers are able to produce radioisotopes never before seen or studied.

Since 2007, when RIBF researchers made their first discovery of the new radioisotopes palladium-125 and palladium-126 using a U-238 beam, the beam intensity has been increased by a factor of more than 50 thanks to the fine tuning of the cyclotrons, setting a new world standard for heavy ion beams. When fully complete, the RIBF will boast intensities more than 1000 times their current levels, providing a unique opportunity to artificially produce and experimentally study almost all nuclides that have ever existed in the universe.

Quote from Dr. Toshiyuki Kubo, head of the Research Instruments Group:

“The group of researchers at the center of these latest radioisotope discoveries has been working on the design and construction of the BigRIPS facility for more than ten years. As someone directly involved in this research, I have to say that I am yet again amazed at the capabilities of our team members and at the RI beam production and detection capabilities of BigRIPS.

The former director of the Nishina Center used to often say that in the RIBF, he aimed to create “the world's foremost RI beam facility”, and I think we all had great confidence that this would happen. I look forward to further discoveries of radioisotopes in unexplored regions of the nuclear chart, and to more applications of RI research in nuclear physics and nuclear astrophysics.”

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Beam BigRIPS Isotop RIKEN RNC RNC’s Radioactive Science TV speed of light

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>