Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists demonstrate effect of confining dielectrics on semiconductor nanowire conductivity

07.05.2009
Finding has potential to optimize the performance of nanowire electronic and optoelectronic devices

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS), in collaboration with researchers from Worcester Polytechnic Institute (WPI), have demonstrated, for the first time, that the activation energy of impurities in semiconductor nanowires is affected by the surrounding dielectric and can be modified by the choice of the nanowire embedding medium.

The finding, published in the April 6 issue of Applied Physics Letters, helps to confirm the "dielectric confinement effect", a key phenomenon in doping and conduction in nanostructures proposed by L. V. Keldysh in 1979. The dielectric confinement effect influences conductivity by changing the activation energy of dopants. Understanding the phenomenon has implications for improving the design of semiconductor nanowires as electronic devices, such as in the case of gas or liquid substance detectors.

"The demonstrated effect sets in as circuit dimensions shrink, which makes the material more sensitive to external conditions," explains lead author Venkatesh Narayanamurti, John A. and Elizabeth S. Armstrong Professor of Engineering and Applied Sciences and Professor of Physics.

Surfaces act like partial mirrors reflecting inner charges, and thus, an image charge in the mirror affects the energy of the real charge. When the surface is far, the mirror image is far and its influence is negligible. But as structures enter the nanometer scale the mirror draws in, making it possible to manipulate the conduction from the outside.

In the experiments, co-author Joonah Yoon, a graduate student at SEAS, coated GaN nanowires with silicon oxide to modify the strength of the surface mirror. The dopant activation energies were obtained from the temperature dependence of the nanowire conductivity. The dominant term of the activation energies extracted out of the data was found to vary inversely with the radii of the nanowires, confirming a previous theoretical prediction.

Further, detailed calculations using finite element method, carried out by graduate student Alexi Girgis of WPI, were used to iteratively solve the wave functions and energies of conduction electrons and accounted for the induced surface charges. The inverse radius dependence turned out to be a good approximation only for certain range of wire sizes.

"Our key finding was that devices made with nanowires, such as nanowire field-effect transistors, require imaginative design of the materials, the surrounding dielectric, and the operating voltage bias to take into account dielectric confinement effects," says Narayanamurti.

Previously, the effects of dielectric confinement have been investigated theoretically for the role they play in defining the optical properties of nanostructures, such as exciton binding energies, while the impact on electrical characteristics has largely been neglected partly due to the misconception that the relevant length scale still falls into the "classical" regime.

The present work opens up the general prospect of dielectric confinement engineering, or a way to exploit and optimize the performance of nanowire electronic and optoelectronic devices.

Additional co-authors included Ilan Shalish, former Research Associate in the Narayanamurti group at SEAS and presently a faculty member at Electrical and Computer Engineering Department at Ben Gurion University in Israel and L. Ramdas Ram-Mohan, Professor of Physics and Electrical and Computer Engineering at WPI. The authors acknowledge the support of the NSF funded Nanoscale Science and Engineering Center (NSEC) at Harvard, and the Center for Computational Nanoscience at WPI.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>