Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists demonstrate effect of confining dielectrics on semiconductor nanowire conductivity

Finding has potential to optimize the performance of nanowire electronic and optoelectronic devices

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS), in collaboration with researchers from Worcester Polytechnic Institute (WPI), have demonstrated, for the first time, that the activation energy of impurities in semiconductor nanowires is affected by the surrounding dielectric and can be modified by the choice of the nanowire embedding medium.

The finding, published in the April 6 issue of Applied Physics Letters, helps to confirm the "dielectric confinement effect", a key phenomenon in doping and conduction in nanostructures proposed by L. V. Keldysh in 1979. The dielectric confinement effect influences conductivity by changing the activation energy of dopants. Understanding the phenomenon has implications for improving the design of semiconductor nanowires as electronic devices, such as in the case of gas or liquid substance detectors.

"The demonstrated effect sets in as circuit dimensions shrink, which makes the material more sensitive to external conditions," explains lead author Venkatesh Narayanamurti, John A. and Elizabeth S. Armstrong Professor of Engineering and Applied Sciences and Professor of Physics.

Surfaces act like partial mirrors reflecting inner charges, and thus, an image charge in the mirror affects the energy of the real charge. When the surface is far, the mirror image is far and its influence is negligible. But as structures enter the nanometer scale the mirror draws in, making it possible to manipulate the conduction from the outside.

In the experiments, co-author Joonah Yoon, a graduate student at SEAS, coated GaN nanowires with silicon oxide to modify the strength of the surface mirror. The dopant activation energies were obtained from the temperature dependence of the nanowire conductivity. The dominant term of the activation energies extracted out of the data was found to vary inversely with the radii of the nanowires, confirming a previous theoretical prediction.

Further, detailed calculations using finite element method, carried out by graduate student Alexi Girgis of WPI, were used to iteratively solve the wave functions and energies of conduction electrons and accounted for the induced surface charges. The inverse radius dependence turned out to be a good approximation only for certain range of wire sizes.

"Our key finding was that devices made with nanowires, such as nanowire field-effect transistors, require imaginative design of the materials, the surrounding dielectric, and the operating voltage bias to take into account dielectric confinement effects," says Narayanamurti.

Previously, the effects of dielectric confinement have been investigated theoretically for the role they play in defining the optical properties of nanostructures, such as exciton binding energies, while the impact on electrical characteristics has largely been neglected partly due to the misconception that the relevant length scale still falls into the "classical" regime.

The present work opens up the general prospect of dielectric confinement engineering, or a way to exploit and optimize the performance of nanowire electronic and optoelectronic devices.

Additional co-authors included Ilan Shalish, former Research Associate in the Narayanamurti group at SEAS and presently a faculty member at Electrical and Computer Engineering Department at Ben Gurion University in Israel and L. Ramdas Ram-Mohan, Professor of Physics and Electrical and Computer Engineering at WPI. The authors acknowledge the support of the NSF funded Nanoscale Science and Engineering Center (NSEC) at Harvard, and the Center for Computational Nanoscience at WPI.

Michael Patrick Rutter | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>