Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create first comprehensive computer model of sunspots

23.06.2009
First model of entire sunspots shows striking, beautiful detail

In a breakthrough that will help scientists unlock mysteries of the sun and its impacts on Earth, scientists have created the first-ever comprehensive computer model of sunspots. The resulting visuals capture both scientific detail and remarkable beauty. The results are published this week in a paper in Science Express. The research was supported by the National Science Foundation (NSF).

The high-resolution simulations of sunspots open the way for scientists to learn more about the vast mysterious dark patches on the sun's surface, first studied by Galileo. Sunspots are associated with massive ejections of charged plasma that can cause geomagnetic storms and disrupt communications and navigational systems. They are also linked to variations in solar output that can affect weather on Earth and exert a subtle influence on climate patterns.

"Understanding complexities in the solar magnetic field is key to 'space weather' forecasting," says Richard Behnke of NSF's Division of Atmospheric Sciences. "If we can model sunspots, we may be able to predict them and be better prepared for the potential serious consequences here on Earth of these violent storms on the sun."

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., collaborated with colleagues at the Max Planck Institute for Solar System Research (MPS) in Germany, building on a computer code that had been created at the University of Chicago.

"This is the first time we have a model of an entire sunspot," says lead paper author Matthias Rempel, a scientist at NCAR's High Altitude Observatory. "If you want to understand all the drivers of Earth's atmospheric system, you have to understand how sunspots emerge and evolve. Our simulations will advance research into the inner workings of the sun as well as connections between solar output and Earth's atmosphere."

Ever since outward flows from the center of sunspots were discovered 100 years ago, scientists have worked to explain the complex structure of sunspots, whose number peaks and wanes during the 11-year solar cycle. Sunspots accompany intense magnetic activity that is associated with solar flares and massive ejections of plasma that can buffet Earth's atmosphere. The resulting damage to power grids, satellites and other sensitive technological systems takes an economic toll on a rising number of industries.

Creating such detailed simulations would not have been possible even as recently as a few years ago, before the latest generation of supercomputers and a growing array of instruments to observe the sun. The new computer models capture pairs of sunspots with opposite polarity. In striking detail, they reveal the dark central region, or umbra, with brighter umbral dots, as well as webs of elongated narrow filaments with flows of mass streaming away from the spots in the outer penumbral regions. They also capture the convective flow and movement of energy that underlie the sunspots, and which are not directly detectable by instruments.

The models suggest that the magnetic fields within sunspots need to be inclined in certain directions in order to create such complex structures. The authors conclude that there is a unified physical explanation for the structure of sunspots in umbra and penumbra that's the consequence of convection in a magnetic field with varying properties.

The simulations can help scientists decipher the mysterious, subsurface forces in the sun that cause sunspots. Such work may lead to an improved understanding of variations in solar output and their impacts on Earth.

To create the simulations, the research team designed a virtual, three- dimensional domain measuring about 31,000 miles by 62,000 miles, and about 3,700 miles in depth--an expanse as long as eight times Earth's diameter, and as deep as Earth's radius.

The scientists then used a series of equations involving fundamental physical laws of energy transfer, fluid dynamics, magnetic induction and feedback, and other phenomena to simulate sunspot dynamics at 1.8 billion grid points within the domain, each spaced about 10 to 20 miles apart.

They solved the equations on NCAR's new bluefire supercomputer, an IBM machine that can perform 76 trillion calculations per second. The work drew on increasingly detailed observations from a network of ground- and space-based instruments to verify that the model captured sunspots realistically. The new models are far more detailed and realistic than previous simulations that failed to capture the complexities of the outer penumbral region.

The researchers noted, however, that even their new model does not accurately capture the lengths of the filaments in parts of the penumbra. They can refine the model by placing the grid points closer together, but that would require more computing power than is currently available.

"Advances in supercomputing power are enabling us to close in on some of the most fundamental processes of the sun," says Michael Knölker, director of NCAR's High Altitude Observatory and a co-author of the paper. "With this breakthrough simulation, an overall comprehensive physical picture is emerging for everything that observers have associated with the appearance, formation, dynamics, and the decay of sunspots on the sun's surface."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>