Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create first comprehensive computer model of sunspots

23.06.2009
First model of entire sunspots shows striking, beautiful detail

In a breakthrough that will help scientists unlock mysteries of the sun and its impacts on Earth, scientists have created the first-ever comprehensive computer model of sunspots. The resulting visuals capture both scientific detail and remarkable beauty. The results are published this week in a paper in Science Express. The research was supported by the National Science Foundation (NSF).

The high-resolution simulations of sunspots open the way for scientists to learn more about the vast mysterious dark patches on the sun's surface, first studied by Galileo. Sunspots are associated with massive ejections of charged plasma that can cause geomagnetic storms and disrupt communications and navigational systems. They are also linked to variations in solar output that can affect weather on Earth and exert a subtle influence on climate patterns.

"Understanding complexities in the solar magnetic field is key to 'space weather' forecasting," says Richard Behnke of NSF's Division of Atmospheric Sciences. "If we can model sunspots, we may be able to predict them and be better prepared for the potential serious consequences here on Earth of these violent storms on the sun."

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., collaborated with colleagues at the Max Planck Institute for Solar System Research (MPS) in Germany, building on a computer code that had been created at the University of Chicago.

"This is the first time we have a model of an entire sunspot," says lead paper author Matthias Rempel, a scientist at NCAR's High Altitude Observatory. "If you want to understand all the drivers of Earth's atmospheric system, you have to understand how sunspots emerge and evolve. Our simulations will advance research into the inner workings of the sun as well as connections between solar output and Earth's atmosphere."

Ever since outward flows from the center of sunspots were discovered 100 years ago, scientists have worked to explain the complex structure of sunspots, whose number peaks and wanes during the 11-year solar cycle. Sunspots accompany intense magnetic activity that is associated with solar flares and massive ejections of plasma that can buffet Earth's atmosphere. The resulting damage to power grids, satellites and other sensitive technological systems takes an economic toll on a rising number of industries.

Creating such detailed simulations would not have been possible even as recently as a few years ago, before the latest generation of supercomputers and a growing array of instruments to observe the sun. The new computer models capture pairs of sunspots with opposite polarity. In striking detail, they reveal the dark central region, or umbra, with brighter umbral dots, as well as webs of elongated narrow filaments with flows of mass streaming away from the spots in the outer penumbral regions. They also capture the convective flow and movement of energy that underlie the sunspots, and which are not directly detectable by instruments.

The models suggest that the magnetic fields within sunspots need to be inclined in certain directions in order to create such complex structures. The authors conclude that there is a unified physical explanation for the structure of sunspots in umbra and penumbra that's the consequence of convection in a magnetic field with varying properties.

The simulations can help scientists decipher the mysterious, subsurface forces in the sun that cause sunspots. Such work may lead to an improved understanding of variations in solar output and their impacts on Earth.

To create the simulations, the research team designed a virtual, three- dimensional domain measuring about 31,000 miles by 62,000 miles, and about 3,700 miles in depth--an expanse as long as eight times Earth's diameter, and as deep as Earth's radius.

The scientists then used a series of equations involving fundamental physical laws of energy transfer, fluid dynamics, magnetic induction and feedback, and other phenomena to simulate sunspot dynamics at 1.8 billion grid points within the domain, each spaced about 10 to 20 miles apart.

They solved the equations on NCAR's new bluefire supercomputer, an IBM machine that can perform 76 trillion calculations per second. The work drew on increasingly detailed observations from a network of ground- and space-based instruments to verify that the model captured sunspots realistically. The new models are far more detailed and realistic than previous simulations that failed to capture the complexities of the outer penumbral region.

The researchers noted, however, that even their new model does not accurately capture the lengths of the filaments in parts of the penumbra. They can refine the model by placing the grid points closer together, but that would require more computing power than is currently available.

"Advances in supercomputing power are enabling us to close in on some of the most fundamental processes of the sun," says Michael Knölker, director of NCAR's High Altitude Observatory and a co-author of the paper. "With this breakthrough simulation, an overall comprehensive physical picture is emerging for everything that observers have associated with the appearance, formation, dynamics, and the decay of sunspots on the sun's surface."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>