Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create first comprehensive computer model of sunspots

23.06.2009
First model of entire sunspots shows striking, beautiful detail

In a breakthrough that will help scientists unlock mysteries of the sun and its impacts on Earth, scientists have created the first-ever comprehensive computer model of sunspots. The resulting visuals capture both scientific detail and remarkable beauty. The results are published this week in a paper in Science Express. The research was supported by the National Science Foundation (NSF).

The high-resolution simulations of sunspots open the way for scientists to learn more about the vast mysterious dark patches on the sun's surface, first studied by Galileo. Sunspots are associated with massive ejections of charged plasma that can cause geomagnetic storms and disrupt communications and navigational systems. They are also linked to variations in solar output that can affect weather on Earth and exert a subtle influence on climate patterns.

"Understanding complexities in the solar magnetic field is key to 'space weather' forecasting," says Richard Behnke of NSF's Division of Atmospheric Sciences. "If we can model sunspots, we may be able to predict them and be better prepared for the potential serious consequences here on Earth of these violent storms on the sun."

Scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., collaborated with colleagues at the Max Planck Institute for Solar System Research (MPS) in Germany, building on a computer code that had been created at the University of Chicago.

"This is the first time we have a model of an entire sunspot," says lead paper author Matthias Rempel, a scientist at NCAR's High Altitude Observatory. "If you want to understand all the drivers of Earth's atmospheric system, you have to understand how sunspots emerge and evolve. Our simulations will advance research into the inner workings of the sun as well as connections between solar output and Earth's atmosphere."

Ever since outward flows from the center of sunspots were discovered 100 years ago, scientists have worked to explain the complex structure of sunspots, whose number peaks and wanes during the 11-year solar cycle. Sunspots accompany intense magnetic activity that is associated with solar flares and massive ejections of plasma that can buffet Earth's atmosphere. The resulting damage to power grids, satellites and other sensitive technological systems takes an economic toll on a rising number of industries.

Creating such detailed simulations would not have been possible even as recently as a few years ago, before the latest generation of supercomputers and a growing array of instruments to observe the sun. The new computer models capture pairs of sunspots with opposite polarity. In striking detail, they reveal the dark central region, or umbra, with brighter umbral dots, as well as webs of elongated narrow filaments with flows of mass streaming away from the spots in the outer penumbral regions. They also capture the convective flow and movement of energy that underlie the sunspots, and which are not directly detectable by instruments.

The models suggest that the magnetic fields within sunspots need to be inclined in certain directions in order to create such complex structures. The authors conclude that there is a unified physical explanation for the structure of sunspots in umbra and penumbra that's the consequence of convection in a magnetic field with varying properties.

The simulations can help scientists decipher the mysterious, subsurface forces in the sun that cause sunspots. Such work may lead to an improved understanding of variations in solar output and their impacts on Earth.

To create the simulations, the research team designed a virtual, three- dimensional domain measuring about 31,000 miles by 62,000 miles, and about 3,700 miles in depth--an expanse as long as eight times Earth's diameter, and as deep as Earth's radius.

The scientists then used a series of equations involving fundamental physical laws of energy transfer, fluid dynamics, magnetic induction and feedback, and other phenomena to simulate sunspot dynamics at 1.8 billion grid points within the domain, each spaced about 10 to 20 miles apart.

They solved the equations on NCAR's new bluefire supercomputer, an IBM machine that can perform 76 trillion calculations per second. The work drew on increasingly detailed observations from a network of ground- and space-based instruments to verify that the model captured sunspots realistically. The new models are far more detailed and realistic than previous simulations that failed to capture the complexities of the outer penumbral region.

The researchers noted, however, that even their new model does not accurately capture the lengths of the filaments in parts of the penumbra. They can refine the model by placing the grid points closer together, but that would require more computing power than is currently available.

"Advances in supercomputing power are enabling us to close in on some of the most fundamental processes of the sun," says Michael Knölker, director of NCAR's High Altitude Observatory and a co-author of the paper. "With this breakthrough simulation, an overall comprehensive physical picture is emerging for everything that observers have associated with the appearance, formation, dynamics, and the decay of sunspots on the sun's surface."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>