Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists carve nanowires out of ultrananocrystalline diamond thin films

04.11.2011
A team of scientists working at Argonne National Laboratory's (ANL) Center for Nanoscale Materials has successfully carved ultrananocrystalline diamond (UNCD) thin films into nanowires, boosting the material's functionality and providing potential improvements to the fabrication of biosensors.

The team, led by Anirudha Sumant, a materials scientist at ANL, will present their research during AVS' 58th International Symposium & Exhibition, held Oct. 30 – Nov. 4, 2011, in Nashville, Tenn.

UNCD thin films are a special form of diamond invented at ANL, and the subject of tremendous interest because of the material's highly desirable ability to alter its electrical properties when the chemical bonding between grain boundaries is modified. "It's a highly attractive carbon-based material with a wide range of applications in communications, medicine, and defense," notes Sumant.

A primary motive behind their studies, he explains, is to understand the electrical transport properties of UNCH when it's fabricated into a nanowire geometry. They also want to see how these properties can be altered by changing chemical bonding at the grain boundary and by taking advantage of increased surface-to-volume ratio at the same time.

"We've demonstrated a pathway to fabricate UNCD nanowires, with widths as small as 30 nanometers at a thickness of 40nanometers, by using a top-down fabrication approach that combines electron beam lithography and [a] reactive ion etching process," says Sumant.

Among the exceptional electrical properties of the UNCD nanowires, the researchers also discovered a resistance that is extremely sensitive to the adsorption of gas molecules at the grain boundaries. This discovery opens up new possibilities for the fabrication of advanced nanoscale sensors for specific use, according to the team.

The main advantage of UNCD over other materials, he explains, is that it provides stable functionalization, which could be very useful for fabricating a new breed of sensors.

UNCD nanowires are initially expected to find applications in the biosensor area, or in pressure or gas sensors, which could be used by the micro-electromechanical systems (MEMS) and semiconductor industries.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation MN-FrM6 "Fabrication and Characterization of Structural and Electrical Properties of Ultrananocrystalline Diamond Nanowires" is at 10 a.m. on Friday, Nov. 4.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>