Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists build first 'frequency comb' to display visible 'teeth'

02.11.2009
Finally, an optical frequency comb that visibly lives up to its name.

Scientists at the University of Konstanz in Germany and the National Institute of Standards and Technology (NIST) in the United States have built the first optical frequency comb—a tool for precisely measuring different frequencies of visible light—that actually looks like a comb.

As described in the Oct. 30 issue of Science,* the "teeth" of the new frequency comb are separated enough that when viewed with a simple optical system—a grating and microscope—the human eye can see each of the approximately 50,000 teeth spanning the visible color spectrum from red to blue. A frequency comb with such well-separated, visibly distinct teeth will be an important tool for a wide range of applications in astronomy, communications and many other areas.

A basis for the 2005 Nobel Prize in physics, frequency combs are now commonplace in research laboratories and next-generation atomic clocks. But until now, comb teeth have been so closely spaced that they were distinguishable only with specialized equipment and great effort, and the light never looked like the evenly striped pattern of the namesake comb to the human eye.

Each tooth of the comb is a different frequency, or color (although the human eye can't distinguish the very small color differences between nearby teeth). A frequency comb can be used like a ruler to measure the light emitted by lasers, atoms, stars or other objects with extraordinarily high precision. Other frequency combs with finer spacing are highly useful tools, but the new comb with more visibly separated teeth will be more effective in many applications such as calibrating astronomical instruments.

The new comb is produced by a dime-sized laser that generates super-fast, super-short pulses of high-power light containing tens of thousands of different frequencies. As in any frequency comb, the properties of the light over time are converted to tick marks or teeth, with each tooth representing a progressively higher number of oscillations of light waves per unit of time. The shorter the pulses of laser light, the broader the range of frequencies produced. In the new comb described in Science, the laser pulses are even shorter and repeated 10 to 100 times faster than in typical frequency combs. The laser emits 10 billion pulses per second, with each pulse lasting about 40 femtoseconds, or quadrillionths of a second, producing extra-wide spacing between individual comb teeth.

Another unusual feature of the new comb is efficient coupling of the laser pulses into a "nonlinear" optical fiber, which dramatically expands the spectrum of frequencies in the comb. Since details of the unusually powerful dime-sized laser were first published in 2008, scientists have doubled the average pulse power directed into the fiber, enabling the comb to reach blue colors for the first time, producing a spectrum across a range of wavelengths from 470 to 1130 nanometers, from blue to infrared. The 50,000 individual colors become visible when the light emitted from the fiber is filtered through a grating spectrometer, a common laboratory instrument that acts like a souped-up prism.

The broad spectrum spanned by the comb—unusual for such a fast pulse rate—enables all the frequencies to be stabilized, using a NIST-developed technique that directly links optical and radio frequencies. Stabilization is crucial for applications.

The ability to directly observe and use individual comb teeth will open up important applications in astronomy, studies of interactions between light and matter, and precision control of high-speed optical and microwave signals for communications, according to the paper. NIST scientists previously have shown, for example, that this type of frequency comb could boost the sensitivity of astronomical tools searching for other Earthlike planets as much as a hundredfold. In addition, the new comb could be useful in a NIST project to develop optical signal-processing techniques, which could dramatically expand the capabilities of communications, surveillance, optical pattern recognition, remote sensing and high-speed computing technologies.

The laser was built by Albrecht Bartels at the Center for Applied Photonics of the University of Konstanz. The frequency comb was built and demonstrated in the lab of NIST physicist Scott Diddams in Boulder, Colo.

As a non-regulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

* A. Bartels, D. Heinecke, and S.A. Diddams. 10 GHz Self-referenced Optical Frequency Comb. Science. Oct. 30, 2009.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>