Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Bonn cool gas by laser bombardment

03.09.2009
First evidence that a method proposed 3 decades ago really works

In their experiment the scientists tested a completely new principle of cooling. For this, they used the property that atoms can be stimulated by light.

In this process an electron changes from its orbit around the atom's nucleus to an orbit that is further away. However, this is only successful if the incoming light has the appropriate colour. Red light has less energy than blue light. Therefore the 'push' which a red laser gives the electron may not be sufficient for lifting it to a higher orbit.

Atoms in a gas collide with each other regularly. The higher the pressure of the gas is, the more frequent the collisions are. 'In this process the electron orbits of the particles "bend",' Professor Martin Weitz from the Institute of Applied Physics explains. 'At the time of the collision, you therefore need less energy than normally in order to vault the electron into a high orbit.' After the collision the electron orbits become normal again. In order to then stay on the higher orbit, the electron has to 'borrow' the missing energy. 'To do so, it uses the kinetic energy of the atom, which becomes slower in this process,' Ulrich Vogl, a member of Weitz's team adds. Speed and temperature are two sides of the same coin – the slower the molecules in a gas move, the colder it is. So the laser bombardment results in the gas cooling down.

This elegant method was already proposed in 1978 by researchers from New York and Helsinki. However, their idea applied to gases of a not particularly high pressure and the experiments carried out in this way were not really successful. Researchers from Bonn have now heated a mixture of argon gas with traces of rubidium to 350 degrees Celsius and increased the pressure to 230 bars. 'Under these conditions we were able to stimulate the rubidium with a laser whose energy would have normally not been sufficient,' Martin Weitz says. 'While we were doing this, the gas mixture cooled down by almost 70 degrees within several seconds.'

With their experiment the physicists from Bonn wanted to demonstrate first of all that laser cooling works in general under pressure. 'But the whole process should also work with gases below room temperature,' Martin Weitz says confidently. 'Possibly even temperatures close to absolute zero can be achieved with this method.' There are already methods of laser cooling with which gases can be cooled to such low temperatures. However, they only work at extremely low pressures. The gas mixture used in Bonn was ten billion times more dense. Moreover, the new method permits much higher refrigeration capacities. It may therefore be possible to design new kinds of mini fridges on this basis.

High refrigeration capacity

The high refrigeration capacity is also what makes the process attractive for matter researchers. It allows gases to be brought into new, previously unexplored states of matter. As a result of the rapid refrigeration they might remain in a gaseous state at temperatures where they would normally be liquid. Similar effects are known from water, which can be cooled down to - 42 degrees Celsius without it freezing. If the cooling happens very quickly, even lower temperatures are conceivable. 'Supercooled' liquids and gases show interesting properties. Producing them is therefore of interest to many scientists.

Dr. Martin Weitz | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>