Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Bonn cool gas by laser bombardment

03.09.2009
First evidence that a method proposed 3 decades ago really works

In their experiment the scientists tested a completely new principle of cooling. For this, they used the property that atoms can be stimulated by light.

In this process an electron changes from its orbit around the atom's nucleus to an orbit that is further away. However, this is only successful if the incoming light has the appropriate colour. Red light has less energy than blue light. Therefore the 'push' which a red laser gives the electron may not be sufficient for lifting it to a higher orbit.

Atoms in a gas collide with each other regularly. The higher the pressure of the gas is, the more frequent the collisions are. 'In this process the electron orbits of the particles "bend",' Professor Martin Weitz from the Institute of Applied Physics explains. 'At the time of the collision, you therefore need less energy than normally in order to vault the electron into a high orbit.' After the collision the electron orbits become normal again. In order to then stay on the higher orbit, the electron has to 'borrow' the missing energy. 'To do so, it uses the kinetic energy of the atom, which becomes slower in this process,' Ulrich Vogl, a member of Weitz's team adds. Speed and temperature are two sides of the same coin – the slower the molecules in a gas move, the colder it is. So the laser bombardment results in the gas cooling down.

This elegant method was already proposed in 1978 by researchers from New York and Helsinki. However, their idea applied to gases of a not particularly high pressure and the experiments carried out in this way were not really successful. Researchers from Bonn have now heated a mixture of argon gas with traces of rubidium to 350 degrees Celsius and increased the pressure to 230 bars. 'Under these conditions we were able to stimulate the rubidium with a laser whose energy would have normally not been sufficient,' Martin Weitz says. 'While we were doing this, the gas mixture cooled down by almost 70 degrees within several seconds.'

With their experiment the physicists from Bonn wanted to demonstrate first of all that laser cooling works in general under pressure. 'But the whole process should also work with gases below room temperature,' Martin Weitz says confidently. 'Possibly even temperatures close to absolute zero can be achieved with this method.' There are already methods of laser cooling with which gases can be cooled to such low temperatures. However, they only work at extremely low pressures. The gas mixture used in Bonn was ten billion times more dense. Moreover, the new method permits much higher refrigeration capacities. It may therefore be possible to design new kinds of mini fridges on this basis.

High refrigeration capacity

The high refrigeration capacity is also what makes the process attractive for matter researchers. It allows gases to be brought into new, previously unexplored states of matter. As a result of the rapid refrigeration they might remain in a gaseous state at temperatures where they would normally be liquid. Similar effects are known from water, which can be cooled down to - 42 degrees Celsius without it freezing. If the cooling happens very quickly, even lower temperatures are conceivable. 'Supercooled' liquids and gases show interesting properties. Producing them is therefore of interest to many scientists.

Dr. Martin Weitz | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>