Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists see billions of miles away

A large group of scientists, including Jay Pasachoff, Bryce Babcock, and Steven Souza at Williams College, reveal the character of one of the most distant objects in the solar system in a scientific paper to appear in the June 17 issue of the journal Nature. In observing the object named 2002 TX300 October 9, 2009, as it passed in front of a distant star, they could tell what its surface is like and its size.

For several years, Pasachoff, Babcock, and Souza have worked with James Elliot and Michael Person of MIT and Amanda Gulbis of the South African Astronomical Observatory in studying Pluto. With careful measurements of a star's brightness as Pluto hides or occults it, they have shown that Pluto's atmosphere was slightly warming or expanding. A main goal is to find out how its atmosphere is now changing, especially with a NASA spacecraft to Pluto en route.

After successful observations of Pluto and its largest moon, Charon, the MIT-Williams team expanded its horizons. Measurements by others of the orbits of several objects discovered beyond Neptune and Pluto had revealed that the object 2002 TX300 was to pass in front of a star; the stars are all so far away that the shadow of the object in starlight on the Earth is the same diameter as that of the object itself. Since predictions of the shadow path had uncertainties of perhaps thousands of miles, the MIT-Williams team set up a network of 21 telescopes from as far north as the western United States mainland and as far south as Mt. John in New Zealand.

On October 9, three important measurements were made with telescopes operated or arranged by Pasachoff, Babcock, and Souza, aided by Williams student Katie DuPré '10, who joined Babcock on the Hawaiian island of Oahu.

The best observations came from a telescope of two meters diameter of the Las Cumbres Observatory Global Telescope Network located at an altitude of 10,000 feet at Haleakala Crater on Maui, Hawaii. Pasachoff coordinated these observations with Wayne Rosing and his colleagues there. The Nature article includes a graph of these observations along with those from the Big Island of Hawaii and from Oahu. The team's success satisfies a long-term goal of Elliot, who used the occultation method to discover the rings of Uranus decades ago and continues to champion the method.

After analysis by Elliot, Person, and colleagues at MIT, the conclusion was clear: 2002 TX300 (also known as 55636 in the numbering scheme of asteroids and other small bodies in the solar system) was much smaller than had first been thought. Its radius is about 89 miles, with an uncertainty of only three miles (143 kilometers with an uncertainty of only five kilometers). Since it is so small, it must be reflective and covered with ice to appear as bright as it does.

The joint article in Nature, with 41 coauthors that included the observers from all the telescopes, is titled "An Old World with a Fresh Surface."

The calculations show that 2002 TX300 is the shiniest object known in the solar system, reflecting 88 percent of the sunlight that hits it.

The measurement confirms that it is one of several fragments knocked off Haumea - one of the three known dwarf planets beyond Pluto - by a collision. (Pasachoff worked during 2008-09 on sabbatical at the California Institute of Technology with Michael Brown, the discoverer of Haumea and many of the other objects in that realm, in trying to use similar techniques to study Haumea and one of its moons as they occulted each other.)

The Nature article describes other calculations that show that the collision that split Haumea occurred about a billion years ago. That age raises the question as to how such a young, icy surface arose on such an old object.

Some of the observations meant to study 2002 TX300 used a camera system, designed in a collaboration of Babcock and Souza with MIT colleagues, known as POETS, for Portable Occultation, Eclipse, and Transit System. A grant from NASA provided three POETS each for Williams and MIT. The recent observations were supported by a grant to Williams from NASA's Planetary Astronomy Division.

Williams College is consistently ranked one of the nation's top liberal arts colleges. Its Hopkins Observatory is the oldest extant astronomical observatory in the United States. The college's 2,000 students are taught by a faculty noted for the quality of their undergraduate teaching. The achievement of academic goals includes active participation of students with faculty in research. Admission decisions are made regardless of a student's financial ability, and the college provides grants and other assistance to meet the demonstrated needs of all who are admitted. Founded in 1793, it is the second oldest institution of higher learning in Massachusetts. The college is located in Williamstown, Mass.

Jay Pasachoff | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Make way for the mini flying machines

21.03.2018 | Life Sciences

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>