Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Bangalore and Mainz develop new methods for cooling of ions

26.11.2012
Ions are cooled during collisions with cold atoms / Similar processes assumed to occur in space

Among the most important techniques developed in atomic physics over the past few years are methods that enable the storage and cooling of atoms and ions at temperatures just above absolute zero. Scientists from Bangalore and Mainz have now demonstrated in an experiment that captured ions can also be cooled through contact with cold atoms and may thus be stored in so-called ion traps in a stable condition for longer periods of time.


The bright spot next to the laser light projected on the electrodes of the ion cage and other surfaces is where the captured ions and atoms overlap.

photo/©: Raman Research Institute

This finding runs counter to predictions that ions would actually be heated through collisions with atoms. The results obtained by the joint Indo-German research project open up the possibility of conducting future chemical experiments to generate molecular ions at temperatures as low as those that prevail in interstellar space.

Scientists of the Raman Research Institute in the Bangalore in India and the Institute of Physics at Johannes Gutenberg University Mainz (JGU) in Germany combined two techniques for their experiment. They captured neutral atoms in a magneto-optic trap, cooled them with laser light to a temperature close to absolute zero at minus 273.15 degrees Celsius, and also stored charged particles in an ion trap. For this purpose, Professor Dr. Günter Werth had to set a Paul trap as used in Mainz in India, where it was combined with a magneto-optic trap. It was thus possible to trap ions and cold atoms at one and the same location to observe their development.

"The question was whether it would work at all," explains Werth. The experiment with rubidium ions and rubidium atoms then showed that the particles did actually exchange energy. The ions were effectively cooled during a collision with the cold atoms. As the scientists write in their article in Nature Communications, there are two fundamental processes that determine the outcome. During continuous cooling, the atoms indirectly extract energy from the trapped ions. In addition, the collision between ions and atoms causes both to exchange their charges and results in the transformation of a 'hot' ion into a 'cold' ion. As it is possible to maintain a constant concentration of atoms in the reservoir of the magneto-optic trap, the system has the capacity to cool a larger number of ions without immediate exhaustion of the atom reservoir.

The interaction between ions and atoms is particularly interesting to physicists because it is thought that similar interactions might also occur in the coldness of outer space. "The expectation is that the interaction of ions and atoms at very low temperatures will result in the formation of molecular ions. This is a process that we believe also occurs in inter-stellar space," says Werth.´

Publication:
K. Ravi, Seunghyun Lee, Arijit Sharma, G. Werth & S.A. Rangwala
Cooling and stabilization by collisions in a mixed ion-atom system
Nature Communications, 9 October 2012
doi:10.1038/ncomms2131
http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2131.html (Abstract)

http://www.uni-mainz.de/bilder_presse/08_physik_etap_ias01.jpg
Experiment set-up
photo/©: Raman Research Institute

http://www.uni-mainz.de/bilder_presse/08_physik_etap_ias02.jpg
The bright spot next to the laser light projected on the electrodes of the ion cage and other surfaces is where the captured ions and atoms overlap.
photo/©: Raman Research Institute

Further information
Professor Dr. Günter Werth
Experimental Particle and Astroparticle Physics (ETAP)
Institute of Physics
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
Tel. +49 6131 39-22883
Fax +49 6131 39-25169
E-Mail: werth@uni-mainz.de
http://www.physik.uni-mainz.de/werth/

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de
http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2131.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>