Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientistis from the Universität Stuttgart use hollow core fibre for future quantum technologies

07.07.2014

Room-temperature single-photon turnstile

Secure data communication, quantum computation, and sensing devices benefit from light sources, which emit only one photon at a time. These light sources operate in a mode that is similar to a turnstile, allowing only one person to pass through at a time.


A new tool for quantum optics: Atoms excited to high energy levels inside a hollow core fibre:

Universität Stuttgart / 5. Physikalisches Institut

Such so-called single photon sources exist already, but with the technical drawback that they only work at ultracold temperatures close to absolute zero. Scientists of the center for Integrated Quantum Science and Technology (IQST) at the University of Stuttgart have now developed a microscopic platform, which could allow for such a turnstile operation, even at room temperature.

They use atom-filled hollow-core optical fibres. Their results were presented in Nature Communications on June 19th 2014.

It is unimaginable to live without the benefits of light in our modern world. We take advantage of light to transmit information around the world through optical fibres, to read out BlueRay discs, and to perform surgeries. That light can be used for many diverse applications lies in its versatile nature. Different light sources produce different types of light.

The subtle differences between light sources, relies on how the light particles, so called photons, leave the light source. Ordinary light bulbs produce quite irregular light. Here, the photons tend to bunch and to exit in groups. Laser light is more regular, but still groups of photons can appear. For some novel technologies researchers ask for even more regular light.

The photons shall leave the light source one by one, like behind a turnstile. Only with these well-separated photons can one fully exploit the quantum mechanical properties of single photons, e.g. for secure data communication. Such sources do exist already, but they can only be operated at extremely low temperatures with lab-filling setups, that are not compatible with real life technologies. 

Researchers from IQST at the University of Stuttgart and the Max Planck Institute for the Science of Llght in Erlangen have now made an important step towards a photon-turnstile that can operate at room temperature.

Robert Löw and his team want to exploit an already known scheme to realize their room-temperature photon turnstile. Scientists working with Sebastian Hofferberth, a researcher also from the University of Stuttgart, have done the following experiment: An ultracold gas of atoms is irradiated with ordinary laser light at a specific wavelength and is absorbed by the gas.

A second laser beam, set to a different wavelength, is then turned on and sent through the gas, making the gas transparent for the first laser beam. The crucial step to create single photons is to excite the atoms in the gas to very high energy levels. These so-called Rydberg atoms are typically 1000’s of times larger than ordinary atoms and are very sensitive. Due to their sensitivity they strongly influence each other, which reduces the transparency effect caused by the second laser beam. More precisely, quantum mechanics takes care that only one photon per time can pass.

This is the starting point for the experiments with hollow core photonic crystal fibres, which are now filled with a room-temperature atomic gas. The laser light is collimated inside the fibre providing the necessary high-intensity light for the optical non-linear response over longer distances than would be possible in free space. Therefore many more Rybergs atoms can be created along the length of the fibre.

The scientists are convinced that the usage of the fibre will make the observation of the turnstile-effect possible even at room temperatures. The problem is the high velocity of the atoms whizzing back and forth in the fibre and eventually colliding with the fibre walls, which ruins the turnstile effect. The hope is that the many more Rydberg atoms in the fibre could compensate for this short lifetime and still sort the photons as desired.

One major concern towards this goal has now been ruled out by the Stuttgart team: The core of the fibre with 19 microns diameter is only marginally larger than the Rydberg atoms and is very likely to perturb the Rydberg atoms and by this the turnstile-effect. The question has been if caged Rydberg atoms behave differently than free range Rydberg atoms and the answer is no. The Rydbergs atoms do not feel the wall until they crash into them. Collisions happen very often, but the time in between wall collisions should be sufficient to realize a photon turnstile.

*Originalpublikation: G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St.J. Russell, R. Löw: "Rydberg atoms in hollow-core photonic crystal fibres", Nature Communications 5 4132 (2014)
Weitere Informationen: Robert Löw, Universität Stuttgart, 5. Physikalisches Institut,
Tel. +49 711 685 64954, E-Mail: r.loew@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

Further reports about: Nature Technology differences hollow microscopic photons technologies temperature temperatures wavelength

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>