Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientistis from the Universität Stuttgart use hollow core fibre for future quantum technologies

07.07.2014

Room-temperature single-photon turnstile

Secure data communication, quantum computation, and sensing devices benefit from light sources, which emit only one photon at a time. These light sources operate in a mode that is similar to a turnstile, allowing only one person to pass through at a time.


A new tool for quantum optics: Atoms excited to high energy levels inside a hollow core fibre:

Universität Stuttgart / 5. Physikalisches Institut

Such so-called single photon sources exist already, but with the technical drawback that they only work at ultracold temperatures close to absolute zero. Scientists of the center for Integrated Quantum Science and Technology (IQST) at the University of Stuttgart have now developed a microscopic platform, which could allow for such a turnstile operation, even at room temperature.

They use atom-filled hollow-core optical fibres. Their results were presented in Nature Communications on June 19th 2014.

It is unimaginable to live without the benefits of light in our modern world. We take advantage of light to transmit information around the world through optical fibres, to read out BlueRay discs, and to perform surgeries. That light can be used for many diverse applications lies in its versatile nature. Different light sources produce different types of light.

The subtle differences between light sources, relies on how the light particles, so called photons, leave the light source. Ordinary light bulbs produce quite irregular light. Here, the photons tend to bunch and to exit in groups. Laser light is more regular, but still groups of photons can appear. For some novel technologies researchers ask for even more regular light.

The photons shall leave the light source one by one, like behind a turnstile. Only with these well-separated photons can one fully exploit the quantum mechanical properties of single photons, e.g. for secure data communication. Such sources do exist already, but they can only be operated at extremely low temperatures with lab-filling setups, that are not compatible with real life technologies. 

Researchers from IQST at the University of Stuttgart and the Max Planck Institute for the Science of Llght in Erlangen have now made an important step towards a photon-turnstile that can operate at room temperature.

Robert Löw and his team want to exploit an already known scheme to realize their room-temperature photon turnstile. Scientists working with Sebastian Hofferberth, a researcher also from the University of Stuttgart, have done the following experiment: An ultracold gas of atoms is irradiated with ordinary laser light at a specific wavelength and is absorbed by the gas.

A second laser beam, set to a different wavelength, is then turned on and sent through the gas, making the gas transparent for the first laser beam. The crucial step to create single photons is to excite the atoms in the gas to very high energy levels. These so-called Rydberg atoms are typically 1000’s of times larger than ordinary atoms and are very sensitive. Due to their sensitivity they strongly influence each other, which reduces the transparency effect caused by the second laser beam. More precisely, quantum mechanics takes care that only one photon per time can pass.

This is the starting point for the experiments with hollow core photonic crystal fibres, which are now filled with a room-temperature atomic gas. The laser light is collimated inside the fibre providing the necessary high-intensity light for the optical non-linear response over longer distances than would be possible in free space. Therefore many more Rybergs atoms can be created along the length of the fibre.

The scientists are convinced that the usage of the fibre will make the observation of the turnstile-effect possible even at room temperatures. The problem is the high velocity of the atoms whizzing back and forth in the fibre and eventually colliding with the fibre walls, which ruins the turnstile effect. The hope is that the many more Rydberg atoms in the fibre could compensate for this short lifetime and still sort the photons as desired.

One major concern towards this goal has now been ruled out by the Stuttgart team: The core of the fibre with 19 microns diameter is only marginally larger than the Rydberg atoms and is very likely to perturb the Rydberg atoms and by this the turnstile-effect. The question has been if caged Rydberg atoms behave differently than free range Rydberg atoms and the answer is no. The Rydbergs atoms do not feel the wall until they crash into them. Collisions happen very often, but the time in between wall collisions should be sufficient to realize a photon turnstile.

*Originalpublikation: G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St.J. Russell, R. Löw: "Rydberg atoms in hollow-core photonic crystal fibres", Nature Communications 5 4132 (2014)
Weitere Informationen: Robert Löw, Universität Stuttgart, 5. Physikalisches Institut,
Tel. +49 711 685 64954, E-Mail: r.loew@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

Further reports about: Nature Technology differences hollow microscopic photons technologies temperature temperatures wavelength

More articles from Physics and Astronomy:

nachricht Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser
05.02.2016 | Tohoku University

nachricht Scientists create new state of matter: Quantum gas, liquid and crystal all-in-one
02.02.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>