Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientistis from the Universität Stuttgart use hollow core fibre for future quantum technologies

07.07.2014

Room-temperature single-photon turnstile

Secure data communication, quantum computation, and sensing devices benefit from light sources, which emit only one photon at a time. These light sources operate in a mode that is similar to a turnstile, allowing only one person to pass through at a time.


A new tool for quantum optics: Atoms excited to high energy levels inside a hollow core fibre:

Universität Stuttgart / 5. Physikalisches Institut

Such so-called single photon sources exist already, but with the technical drawback that they only work at ultracold temperatures close to absolute zero. Scientists of the center for Integrated Quantum Science and Technology (IQST) at the University of Stuttgart have now developed a microscopic platform, which could allow for such a turnstile operation, even at room temperature.

They use atom-filled hollow-core optical fibres. Their results were presented in Nature Communications on June 19th 2014.

It is unimaginable to live without the benefits of light in our modern world. We take advantage of light to transmit information around the world through optical fibres, to read out BlueRay discs, and to perform surgeries. That light can be used for many diverse applications lies in its versatile nature. Different light sources produce different types of light.

The subtle differences between light sources, relies on how the light particles, so called photons, leave the light source. Ordinary light bulbs produce quite irregular light. Here, the photons tend to bunch and to exit in groups. Laser light is more regular, but still groups of photons can appear. For some novel technologies researchers ask for even more regular light.

The photons shall leave the light source one by one, like behind a turnstile. Only with these well-separated photons can one fully exploit the quantum mechanical properties of single photons, e.g. for secure data communication. Such sources do exist already, but they can only be operated at extremely low temperatures with lab-filling setups, that are not compatible with real life technologies. 

Researchers from IQST at the University of Stuttgart and the Max Planck Institute for the Science of Llght in Erlangen have now made an important step towards a photon-turnstile that can operate at room temperature.

Robert Löw and his team want to exploit an already known scheme to realize their room-temperature photon turnstile. Scientists working with Sebastian Hofferberth, a researcher also from the University of Stuttgart, have done the following experiment: An ultracold gas of atoms is irradiated with ordinary laser light at a specific wavelength and is absorbed by the gas.

A second laser beam, set to a different wavelength, is then turned on and sent through the gas, making the gas transparent for the first laser beam. The crucial step to create single photons is to excite the atoms in the gas to very high energy levels. These so-called Rydberg atoms are typically 1000’s of times larger than ordinary atoms and are very sensitive. Due to their sensitivity they strongly influence each other, which reduces the transparency effect caused by the second laser beam. More precisely, quantum mechanics takes care that only one photon per time can pass.

This is the starting point for the experiments with hollow core photonic crystal fibres, which are now filled with a room-temperature atomic gas. The laser light is collimated inside the fibre providing the necessary high-intensity light for the optical non-linear response over longer distances than would be possible in free space. Therefore many more Rybergs atoms can be created along the length of the fibre.

The scientists are convinced that the usage of the fibre will make the observation of the turnstile-effect possible even at room temperatures. The problem is the high velocity of the atoms whizzing back and forth in the fibre and eventually colliding with the fibre walls, which ruins the turnstile effect. The hope is that the many more Rydberg atoms in the fibre could compensate for this short lifetime and still sort the photons as desired.

One major concern towards this goal has now been ruled out by the Stuttgart team: The core of the fibre with 19 microns diameter is only marginally larger than the Rydberg atoms and is very likely to perturb the Rydberg atoms and by this the turnstile-effect. The question has been if caged Rydberg atoms behave differently than free range Rydberg atoms and the answer is no. The Rydbergs atoms do not feel the wall until they crash into them. Collisions happen very often, but the time in between wall collisions should be sufficient to realize a photon turnstile.

*Originalpublikation: G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. St.J. Russell, R. Löw: "Rydberg atoms in hollow-core photonic crystal fibres", Nature Communications 5 4132 (2014)
Weitere Informationen: Robert Löw, Universität Stuttgart, 5. Physikalisches Institut,
Tel. +49 711 685 64954, E-Mail: r.loew@physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

Further reports about: Nature Technology differences hollow microscopic photons technologies temperature temperatures wavelength

More articles from Physics and Astronomy:

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>