Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientist Explains Whistler Turbulence in Space

Gusty winds streaming off our Sun are called solar wind and this wind propagates outwardly and develops in complicated structures, i.e. turbulence, in space and time all across the interplanetary space. The behavior of the solar wind is quite unpredictable and has long been a subject of comprehensive research because it governs numerous processes that directly impacts planet Earth.

These include geomagnetic storm, hazardous cosmic particles, space weather etc. Understanding the behavior of solar wind is therefore very critical. In situ spacecraft measurements, theory and modeling are trying to find out a fundamental question; how energy from the solar wind is transferred across many different scales (like packets or eddies of various shapes and sizes) in the interplanetary space. Unfortunately, owing to its complex nature, the problem of solar wind turbulence continues to remain one of the unresolved issues in space physics.

What is remarkably complicated is the multitude of length and time scales on which turbulence is happening throughout the interplanetary space. At very high (higher than ion cyclotron) frequency, the magnetized solar wind plasma excites whistler waves (that sounds like whistles and were first discovered by World War I radio operators) whose behavior is far more complicated than ever thought. Unfortunately their dynamics is poorly understood in the context of solar wind turbulence that transfers energy from large scale down to the scales where the wind heats up the local plasma in the interplanetary space.

A new fluid model developed by Professor Dastgeer Shaikh at the Physics Department and Center for Space Plasma and Aeronomic Research at The University of Alabama in Huntsville (UAHuntsville), links turbulence in solar wind to the transfer of energy in space and might help shed light on this mysterious process.

Dr. Shaikh discovered that the transfer of energy in solar wind occurs much quicker than predicted by earlier theories and that density of these waves do not affect the manner in which energy is transferred across the small scale high frequency whistler turbulence in the solar wind plasma. “Earlier researchers have ignored the effect of density fluctuations on whistler wave turbulence and this step was very crucial for us to take in a forward direction if are to understand the solar wind turbulence,” he said.

“Unfortunately we are not yet well equipped to measure the role of density fluctuations in the regime where whistler waves play a critical role in converting the solar wind energy into heat,” said Dr Shaikh, who added that his work is therefore very important to test observationally by in situ measurements. “Since density does not modify the general consensus of solar wind turbulence, that follows a universal power law, we like to believe that they interact weakly with the wave magnetic field at such a high frequency,” he said.

Dr. Shaikh is a leading scientist in the field of whistler and solar wind turbulence at UAHuntsville. His results agree with the spacecraft observations that measured the solar wind energy law 20 years ago. The research results of Dr. Shaikh are to appear in Monthly Notices of the Royal Astronomical Society.

Dastgeer Shaikh
phone: 951-210-4975

Dastgeer Shaikh | Newswise Special Wire
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>