Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schrödinger cats snatch many-particle quantum states

19.09.2011
Scientists from University of Marburg and JILA (University of Colorado and NIST) establish a high-precision framework for laser spectroscopy to directly accesses quantum properties of matter.

Quantum mechanics describes the complete information of any given system. Even though nanotechnology has developed tremendously during the last decades, one can currently access the full quantum information only when systems are extremely simple such as single light modes or single atoms. This limitation is about to be removed due to the recent developments reported in Nature Physics. This research introduces a completely new framework by adding quantum aspects into generic laser spectroscopy.

Over the years, the evolution of lasers has followed a clear path where the control over their spectrum, intensity, and phase has been continuously improved. These classical aspects are already mastered with astounding accuracy; for example, the universal standards for time and length are based on the high-precision laser spectroscopy. However, light contains also a quantum extension that must be conquered next. The field of quantum optics is pioneering the development toward this direction. Until now, it has seemed inconceivable to investigate quantum-optical properties of many-particle systems simply because of the overwhelming mathematical complexity and technical challenges. Therefore, the quantum-optical aspects of many-particle physics are still largely unexplored, which clearly hinders major advancements in many fields with nanotechnology aspirations.

Toward new quantum-spectroscopy framework

The Marburg-JILA collaboration has approached this monumental dilemma from a completely new point of view by demonstrating that the quantum-laser spectroscopy can be realized by using the very same approaches as those applied in any high-precision laser spectroscopy. Mackillo Kira explains: “As the first step, one simply collects a massive set of measurement data as function of classical laser’s intensity and phase. Astonishingly, we found a way to mathematically project all possible quantum-optical measurements, even though this information is highly convolved.” Steven Cundiff adds: “We have essentially combined best of both worlds concerning high-precision measurements and quantum theory to robustly project quantum-optical data.” To demonstrate the new framework of quantum spectroscopy, this research team analyzed how light absorption in semiconductors – with roughly one million particles – was influenced by quantum fluctuations of light.

Already 1935, Erwin Schrödinger introduced a cat state as a superposition of dead and alive states to elucidate the essence of interference effects, responsible for many nonintuitive effects such as teleportation and quantum computing. One can approach an analogous situation less drastically by considering a quantum-laser source in superposition of two extreme states. Ryan Smith stresses: “Our results show that Schrödinger-cat-state lasers directly access targeted many-particle states with extraordinary accuracy. In particular, we could single out both molecule and electron-cluster states from the interacting semiconductor, just by adjusting the quantum-interference properties of the Schrödinger cat states used.” Stephan Koch concludes: “This means we have solved how generic quantum-optics investigations can be performed in practice.”

Future of quantum spectroscopy

Already the ordinary laser spectroscopy is one of the most powerful methods in metrology, physics, chemistry, and biology to characterize nanoscale processes of very different systems. Steven Cundiff comments: “Our work simply generalizes the laser spectroscopy to a completely new level by making quantum spectroscopy possible with minor modifications to present-day laser spectroscopies.” Mackillo Kira summarizes: “Since the developed framework opens an unprecedented access to complicated nanoscale processes – previously considered inconceivable – our results can revolutionize the way laser spectroscopy will be applied in the future.”

Research team
The theory part of this collaborative work was conducted in Marburg by Profs. Mackillo Kira and Stephan W. Koch and the experiments were performed in JILA by Dr. Ryan Smith, Andrew Hunter, and Prof. Steven Cundiff.

Original publication: M. Kira, S.W. Koch, R.P. Smith, A.E. Hunter, and S. T. Cundiff, Quantum spectroscopy with Schrödinger-cat states, Nature Physics, DOI 10.1038/nphys2091 (2011).

Further Information:
Contact: Prof. Mackillo (Mack) Kira
Department of Physics
University of Marburg
Renthof 5
D 35032 Marburg
Tel: +49 (0)6421 28 24222
Fax: +49 (0)6421 28 27076
Email: mackillo.kira@physik.uni-marburg.de

Johannes Scholten | idw
Further information:
http://www.uni-marburg.de

Further reports about: JILA Nature Immunology Quantum Schrödinger laser spectroscopy single atom

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>