Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sandia Z-Machine Results Challenge Astrophysical Models of the Universe

Ice giant planets have more water volume than formerly estimated, Sandia Labs Z accelerator tests indicate

In a challenge to current astrophysical models of the universe, researchers at Sandia National Laboratories Z machine and the University of Rostock in Germany have found that current estimates of ice-giant planetary interiors overstate water’s compressibility by as much as 30 percent.

The work was reported in the paper “Probing the Interior of the Ice Giants” in the Feb. 27 Physical Review Letters.

“Our results question science’s understanding of the internal structure of these planets,” said Sandia lead author Marcus Knudson, “and should require revisiting essentially all the modeling of ice giants within and outside our solar system.”

An accurate estimate of water’s shrinking volume under the huge gravitational pressures of large planets is essential to astrophysicists trying to model the evolution of the universe. They need to assume how much space is taken up by water trapped under high density and pressure, deep inside a planet, to calculate how much is needed of other elements to flesh out the planet’s astronomical image.

To come up with the composition of the so-called ice-giants Neptune and Uranus, as well as any of the ice-giant exoplanets being discovered in distant star systems, astrophysicists begin with the orbit, age, radius and mass of each planet. Then, using equations that describe the behavior of elements as the forming planet cooled, they calculate what light and heavy elements might have contributed to its evolution to end up with the current celestial object.

But if estimates of water volume are off-target, then so is everything else.

The measurements — 10 times more accurate than any previously reported — at Sandia’s Z accelerator agree with results from a modern simulation effort that uses the quantum mechanics of Schrödinger’s wave equation — the fundamental equation of wave mechanics — to predict the behavior of water under extreme pressure and density.

The model, developed through a University of Rostock and Sandia collaboration, is called “First Principles Modeling” because it contains no tuning parameters.

“You’re solving Schrödinger’s equation from a quantum mechanical perspective with hydrogen and oxygen as input; there aren’t any knobs for finagling the result you want or expect,” Knudson said.

The model’s results are quite different from earlier chemical pictures of water’s behavior under pressure, but agree quite well with the Z machine’s test results, said Knudson. These results were achieved by using Z’s magnetic fields to shoot tiny plates 40 times faster than a rifle bullet into a water-sample target a few millimeters away. The impact of each plate into the target created a huge shock wave that compressed the water to roughly one-fourth its original volume, momentarily creating conditions similar to those in the interior of the ice giants.

Sub-nanosecond observations captured the behavior of water under pressures and densities that occur somewhere between the surface and core of ice giants.

“We took advantage of recent, more precise methods to measure the speed of the shock wave moving through the water sample by measuring the Doppler shift of laser light reflected from the moving shock front, to 0.1 percent accuracy,” said Knudson.

The re-shocked state of water was also determined by observing its behavior as the shock wave reflected back into the water from a quartz rear window (its characteristics also determined) in the target. These results provided a direct test of the First Principles model along a thermodynamic path that mimics the path one would follow if one could bore deep into a planet’s interior.

Multiple experiments were performed, providing a series of results at increasing pressures to create an accurate equation of state. Such equations link changes in pressures with changes in temperatures and volumes.

Z can create more pressure — up to 20 megabars — than at Earth’s core (roughly 3.5 megabars), and millions of times Earth’s atmospheric pressure. The Z projectiles, called flyer plates, achieve velocities from 12 to 27 kilometers a second, or up to 60,000 mph. The pressure at the center of Neptune is roughly 8 megabars.

Water at Z’s ice-giant pressures also was found to have reflectivity like that of a weak metal, raising the possibility that water’s charged molecular fragments might be capable of generating a magnetic field. This could help explain certain puzzling aspects of the magnetic fields around Neptune and Uranus.

“Reducing uncertainty on the composition of planetary systems by precisely measuring the equation of state of water at extreme conditions can only help us understand how these systems formed,” Knudson said.

These experimental techniques also are used at Z to study materials of critical importance to the nuclear weapons program. In addition to producing the largest amount of X-rays on Earth when firing, the huge pressures generated by Z make it useful to astrophysicists seeking data similar to that produced by black holes and neutron stars.

Also listed as paper authors are Mike Desjarlais, Ray Lemke and Thomas Mattsson from Sandia, and Martin French, Nadine Nettelmann and Ronald Redmer from the University of Rostock’s Institute of Physics.

Research support was provided by the German Science Foundation and the National Nuclear Security Administration.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

| Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>