Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salty ocean in the depths of Enceladus

26.06.2009
Discovery could have implications for the search for extraterrestrial life

An enormous plume of water spurts in giant jets from the south pole of Saturn's moon Enceladus. In a report published in the international science journal Nature today (25 June), European researchers provide evidence that this magnificent plume is fed by a salty ocean.

The discovery could have implications for the search for extraterrestrial life as well as our understanding of how planetary moons are formed.

The Cassini spacecraft made a surprising discovery about Saturn's sixth largest moon, Enceladus, on its exploration of the giant ringed planet in 2005. Enceladus ejects water vapour, gas and tiny grains of ice into space hundreds of kilometres above the moon's surface.

Enceladus orbits in Saturn's outermost "E" ring. It is one of only three outer solar system bodies that produce active eruptions of dust and vapour. Moreover, aside from the Earth, Mars, and Jupiter's moon Europa, it is one of the only places in the solar system for which astronomers have direct evidence of the presence of water.

New understanding of how this plume is produced was revealed in Nature in 2008 by Juergen Schmidt of the University of Potsdam, Germany, and Nikolai Brilliantov of the University of Leicester, and colleagues. They explained how the water vapour jets are blasted out much faster than the dust particles. To work their theory required that Enceladus has an ocean of liquid water below its surface. The same team, working with Frank Postberg of the University of Heidelberg and the Max Planck Institute for Nuclear Physics, in Heidelberg, has now found the direct experimental evidence for the presence of this ocean, which was previously lacking.

Current theories of satellite formation suggest that should a moon have a deep liquid ocean in contact with the body's rocky core, for many millions of years, then it should be a salty ocean.

The team now reports the detection of sodium salts among the dust ejected in the Enceladus plume. Postberg and colleagues have studied data from the Cosmic Dust Analyzer (CDA) onboard the Cassini spacecraft and have combined this data with laboratory experiments. They have shown that the icy grains in the Enceladus plume contain substantial quantities of sodium salts, hinting at the salty ocean deep below.

The theory, proposed by Brilliantov and Schmidt has allowed the team to relate the detected salt in the CDA with the likely concentration in the water vapour above the ocean, which proves the consistency of the experimental data. The results of the study imply that the concentration of sodium chloride in the ocean can be as high as that of Earth's oceans and is about 0.1-0.3 moles of salt per kilogram of water.

NOTE TO NEWSDESK:

The content of the press release and papers is embargoed until 1800 hrs London time / 1300 US Eastern Time (please note changes due to Daylight Saving Time) on 24 June, the day before publication. Wire services stories must always carry the embargo time at the head of each item, and may not be sent out more than 24 hours before that time. Journalists should seek to credit the relevant Nature publication as the source of stories covered.

For interviews contact:
Prof. Nikolai Brilliantov
Department of Mathematics,
University of Leicester
University Road,
Leicester LE1 7RH,
UK
Email: nb144@leicester.ac.uk
Telephone: +44 (0) 116 252 252 1
http://www.math.le.ac.uk/people/nb144
The full listing of authors and their affiliations for this paper is as follows:
F.Postberg1,2, S.Kempf2,3, J.Schmidt4, N.Brillantov5,6, A.Beinsen7, B.Abel7,8, U.Buck9, R.Srama2

1 Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany

2 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

3 IGEP,Technische Universität Braunschweig, 38106 Braunschweig, Germany

4 Nichtlineare Dynamik, Universität Potsdam, 14469 Potsdam, Germany

5 Department of Mathematics, University of Leicester, Leicester LEI 7RH, UK

6 Department of Physics, Moscow State University, 119991 Moscow, Russia

7 Institut für Physikalische Chemie, Universität Göttingen, 37077, Göttingen, Germany

8 Wilhelm-Oswald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

9 Max-Planck-Institut für Dynamik und Selbstorganisation, 37073 Göttingen, Germany

The work has been supported by DLR and DFG.

Prof Nikolai Brilliantov | EurekAlert!
Further information:
http://www.leicester.ac.uk

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>