Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salty ocean in the depths of Enceladus

26.06.2009
Discovery could have implications for the search for extraterrestrial life

An enormous plume of water spurts in giant jets from the south pole of Saturn's moon Enceladus. In a report published in the international science journal Nature today (25 June), European researchers provide evidence that this magnificent plume is fed by a salty ocean.

The discovery could have implications for the search for extraterrestrial life as well as our understanding of how planetary moons are formed.

The Cassini spacecraft made a surprising discovery about Saturn's sixth largest moon, Enceladus, on its exploration of the giant ringed planet in 2005. Enceladus ejects water vapour, gas and tiny grains of ice into space hundreds of kilometres above the moon's surface.

Enceladus orbits in Saturn's outermost "E" ring. It is one of only three outer solar system bodies that produce active eruptions of dust and vapour. Moreover, aside from the Earth, Mars, and Jupiter's moon Europa, it is one of the only places in the solar system for which astronomers have direct evidence of the presence of water.

New understanding of how this plume is produced was revealed in Nature in 2008 by Juergen Schmidt of the University of Potsdam, Germany, and Nikolai Brilliantov of the University of Leicester, and colleagues. They explained how the water vapour jets are blasted out much faster than the dust particles. To work their theory required that Enceladus has an ocean of liquid water below its surface. The same team, working with Frank Postberg of the University of Heidelberg and the Max Planck Institute for Nuclear Physics, in Heidelberg, has now found the direct experimental evidence for the presence of this ocean, which was previously lacking.

Current theories of satellite formation suggest that should a moon have a deep liquid ocean in contact with the body's rocky core, for many millions of years, then it should be a salty ocean.

The team now reports the detection of sodium salts among the dust ejected in the Enceladus plume. Postberg and colleagues have studied data from the Cosmic Dust Analyzer (CDA) onboard the Cassini spacecraft and have combined this data with laboratory experiments. They have shown that the icy grains in the Enceladus plume contain substantial quantities of sodium salts, hinting at the salty ocean deep below.

The theory, proposed by Brilliantov and Schmidt has allowed the team to relate the detected salt in the CDA with the likely concentration in the water vapour above the ocean, which proves the consistency of the experimental data. The results of the study imply that the concentration of sodium chloride in the ocean can be as high as that of Earth's oceans and is about 0.1-0.3 moles of salt per kilogram of water.

NOTE TO NEWSDESK:

The content of the press release and papers is embargoed until 1800 hrs London time / 1300 US Eastern Time (please note changes due to Daylight Saving Time) on 24 June, the day before publication. Wire services stories must always carry the embargo time at the head of each item, and may not be sent out more than 24 hours before that time. Journalists should seek to credit the relevant Nature publication as the source of stories covered.

For interviews contact:
Prof. Nikolai Brilliantov
Department of Mathematics,
University of Leicester
University Road,
Leicester LE1 7RH,
UK
Email: nb144@leicester.ac.uk
Telephone: +44 (0) 116 252 252 1
http://www.math.le.ac.uk/people/nb144
The full listing of authors and their affiliations for this paper is as follows:
F.Postberg1,2, S.Kempf2,3, J.Schmidt4, N.Brillantov5,6, A.Beinsen7, B.Abel7,8, U.Buck9, R.Srama2

1 Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany

2 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

3 IGEP,Technische Universität Braunschweig, 38106 Braunschweig, Germany

4 Nichtlineare Dynamik, Universität Potsdam, 14469 Potsdam, Germany

5 Department of Mathematics, University of Leicester, Leicester LEI 7RH, UK

6 Department of Physics, Moscow State University, 119991 Moscow, Russia

7 Institut für Physikalische Chemie, Universität Göttingen, 37077, Göttingen, Germany

8 Wilhelm-Oswald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany

9 Max-Planck-Institut für Dynamik und Selbstorganisation, 37073 Göttingen, Germany

The work has been supported by DLR and DFG.

Prof Nikolai Brilliantov | EurekAlert!
Further information:
http://www.leicester.ac.uk

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>