Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sailing the Titan Seas

10.05.2011
NASA Selects Mission to Saturn’s Moon for Discovery Program Development

The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., is managing a project to explore the organic seas of Saturn’s moon Titan, one of three proposals selected by NASA this week as candidates for the agency’s next Discovery Program mission.

The Titan Mare Explorer, or TiME, would perform the first direct inspection of an ocean environment beyond Earth by landing in, and floating on, a large methane-ethane sea on the cloudy, complex moon. The mission would be led by principal investigator Ellen Stofan of Proxemy Research Inc. in Gaithersburg, Md. Lockheed Martin in Denver would build the TiME capsule, with scientific instruments provided by APL, NASA Goddard Space Flight Center in Greenbelt, Md., and Malin Space Science Systems in San Diego.

Also selected were a NASA Jet Propulsion Laboratory lander that would study the Martian interior, and a NASA Goddard project to land on a comet multiple times and observe its interaction with the Sun. Chosen from 28 full-mission proposals, each investigation team now receives $3 million to develop a detailed concept study. After another review of those studies in 2012, NASA will select one to develop for launch. The selected mission will be cost-capped at $425 million, not including launch vehicle funding.

APL also has a role on the NASA Goddard mission team, to provide a high-resolution telescopic camera for the “Comet Hopper” spacecraft.

“NASA’s comment on the Discovery selection was, ‘if ever there was a time to demonstrate being able to think differently, this is it,’” says John Sommerer, head of APL’s Space Department. “It’s ‘common knowledge’ that outer-planets missions are billion-dollar operations, but our team proposed a lander on Titan in the low-cost Discovery mission series. Coming off the success of both the MESSENGER mission to Mercury and the New Horizons mission now on its way to Pluto, it’s clear that APL has met the challenge to think differently.”

The TiME capsule would launch in 2016 and reach Titan in 2023, parachuting onto the moon’s second-largest northern sea, the Ligeia Mare. For 96 days the capsule would study the composition and behavior of the sea and its interaction with Titan’s weather and climate. TiME would also seek evidence of the complex organic chemistry that may be active on Titan today, and that may be similar to processes that led to the development of life on the early Earth.

NASA’s Discovery Program sponsors frequent, cost-capped solar system exploration missions with highly focused scientific goals. The Applied Physics Laboratory led the first Discovery-class mission, NEAR, which in 2000-2001 became the first spacecraft to orbit and land on an asteroid. APL also leads one of the program’s latest successes, MESSENGER, which began a yearlong orbit of the planet Mercury in March 2011. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Discovery Program for the agency’s Science Mission Directorate. To learn more, visit http://discovery.nasa.gov.

The Applied Physics Laboratory, a division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology.

Michael Buckley | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>