Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the S-curve in everything

21.07.2011
Esses are everywhere.

From economic trends, population growth, the spread of cancer, or the adoption of new technology, certain patterns inevitably seem to emerge. A new technology, for example, begins with slow acceptance, followed by explosive growth, only to level off before "hitting the wall."

When plotted on graph, this pattern of growth takes the shape of an "S."

While this S-curve has long been recognized by economists and scientists, a Duke University professor believes that a theory he developed explains the reason for the prevalence of this particular pattern, and thus provides a scientific basis for its appearance throughout nature and the man-made world.

"This phenomenon is so common that it has generated entire fields of research that seem unrelated – the spread of biological populations, chemical reactions, contaminants, languages, information and economic activity," said Adrian Bejan, engineering professor at Duke's Pratt School of Engineering. "We have shown that this pattern can be predicted entirely as a natural flow design."

The concept of flow design, whether it be energy, rivers or human populations, is central to Bejan's theory.

The results of this theory of the S-curve, conducted with collaborator Sylvie Lorente from the University Toulouse, France, were published online in the Journal of Applied Physics. The research was supported by the National Science Foundation, the U.S. Air Force Office of Scientific Research and the National Renewable Energy Laboratory.

Bejan's theory, known as the constructal law, is based on the principle that flow systems evolve their designs over time to facilitate flow access, reducing and distributing friction or other forms of resistance. Bejan developed the principle 15 years ago, and has been using it to describe and predict a wide variety of man-made and natural phenomena.

The current analysis views this ubiquitous S-curve (also known as the sigmoid function) as a natural design of flow systems. In the example of a new technology, after a slow initial acceptance, the rise can be imagined moving fast through established, though narrow, channels into the market place. This is the steep upslope of the "S."

As this technology matures, and its penetration slows, any growth, or flow, moves outward from the initial penetration channels in a shorter and slower manner. Bejan likes to the use metaphor of fingers stretching out to represent the initial invasive growth, with the placement of a glove over those fingers as a representation of the lateral consolidation phase.

"It's like there are two lives – the first is long and fast, while the second phase is short and slow," Bejan said. "The trend begins with a quick 'invasion,' followed by a 'slower' consolidation. Then the trend hits a wall."

This pattern matches that of the constructal theory, which uses a large river basin as a visual description of flow systems, growing fast and far, with smaller branches growing laterally from the main channels.

"The prevalence of the S-curve phenomena in nature rivals that of the tree-shaped flows, which also unite the animate, inanimate and human realms," Bejan said. "This theory shows that this is not a coincidence – both are manifestations of the natural constructal tendency of flow systems to generate evolving designs that allow them to flow, spread and collect more easily."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>