Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the S-curve in everything

21.07.2011
Esses are everywhere.

From economic trends, population growth, the spread of cancer, or the adoption of new technology, certain patterns inevitably seem to emerge. A new technology, for example, begins with slow acceptance, followed by explosive growth, only to level off before "hitting the wall."

When plotted on graph, this pattern of growth takes the shape of an "S."

While this S-curve has long been recognized by economists and scientists, a Duke University professor believes that a theory he developed explains the reason for the prevalence of this particular pattern, and thus provides a scientific basis for its appearance throughout nature and the man-made world.

"This phenomenon is so common that it has generated entire fields of research that seem unrelated – the spread of biological populations, chemical reactions, contaminants, languages, information and economic activity," said Adrian Bejan, engineering professor at Duke's Pratt School of Engineering. "We have shown that this pattern can be predicted entirely as a natural flow design."

The concept of flow design, whether it be energy, rivers or human populations, is central to Bejan's theory.

The results of this theory of the S-curve, conducted with collaborator Sylvie Lorente from the University Toulouse, France, were published online in the Journal of Applied Physics. The research was supported by the National Science Foundation, the U.S. Air Force Office of Scientific Research and the National Renewable Energy Laboratory.

Bejan's theory, known as the constructal law, is based on the principle that flow systems evolve their designs over time to facilitate flow access, reducing and distributing friction or other forms of resistance. Bejan developed the principle 15 years ago, and has been using it to describe and predict a wide variety of man-made and natural phenomena.

The current analysis views this ubiquitous S-curve (also known as the sigmoid function) as a natural design of flow systems. In the example of a new technology, after a slow initial acceptance, the rise can be imagined moving fast through established, though narrow, channels into the market place. This is the steep upslope of the "S."

As this technology matures, and its penetration slows, any growth, or flow, moves outward from the initial penetration channels in a shorter and slower manner. Bejan likes to the use metaphor of fingers stretching out to represent the initial invasive growth, with the placement of a glove over those fingers as a representation of the lateral consolidation phase.

"It's like there are two lives – the first is long and fast, while the second phase is short and slow," Bejan said. "The trend begins with a quick 'invasion,' followed by a 'slower' consolidation. Then the trend hits a wall."

This pattern matches that of the constructal theory, which uses a large river basin as a visual description of flow systems, growing fast and far, with smaller branches growing laterally from the main channels.

"The prevalence of the S-curve phenomena in nature rivals that of the tree-shaped flows, which also unite the animate, inanimate and human realms," Bejan said. "This theory shows that this is not a coincidence – both are manifestations of the natural constructal tendency of flow systems to generate evolving designs that allow them to flow, spread and collect more easily."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>