Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RXTE Reveals the Cloudy Cores of Active Galaxies

20.02.2014
Picture a single cloud large enough to span the solar system from the sun to beyond Pluto's orbit. Now imagine many such clouds orbiting in a vast ring at the heart of a distant galaxy, occasionally dimming the X-ray light produced by the galaxy's monster black hole.

Using data from NASA's Rossi X-ray Timing Explorer (RXTE) satellite, an international team has uncovered a dozen instances where X-ray signals from active galaxies dimmed as a result of a cloud of gas moving across our line of sight. The new study triples the number of cloud events previously identified in the 16-year archive.

At the hearts of most big galaxies, including our own Milky Way, there lurks a supermassive black hole weighing millions to billions of times the sun's mass. As gas falls toward a black hole, it gathers into a so-called accretion disk and becomes compressed and heated, ultimately emitting X-rays. The centers of some galaxies produce unusually powerful emission that exceeds the sun's energy output by billions of times. These are active galactic nuclei, or AGN.

"One of the great unanswered questions about AGN is how gas thousands of light-years away funnels into the hot accretion disk that feeds the supermassive black hole," said Alex Markowitz, an astrophysicist at the University of California, San Diego and the Karl Remeis Observatory in Bamberg, Germany. "Understanding the size, shape and number of clouds far from the black hole will give us a better idea of how this transport mechanism operates."

The study is the first statistical survey of the environments around supermassive black holes and is the longest-running AGN-monitoring study yet performed in X-rays. In the paper, which will appear in a future issue of Monthly Notices of the Royal Astronomical Society and is now published online, the scientists describe various properties of the occulting clouds, which vary in size and shape but average 4 billion miles (6.5 billion km) across – greater than Pluto's distance from the sun -- and twice the mass of Earth. They orbit a few light-weeks to a few light-years from the black hole.

RXTE's instruments measured variations in X-ray emission on timescales as short as microseconds and as long as years across a wide energy span, from 2,000 to 250,000 electron volts. For comparison, the energy of a typical dental X-ray is around 60,000 electron volts. NASA decommissioned the observatory in 2012, following 16 years of successful operation in Earth orbit.

"Because RXTE performed sustained observations of many of these AGN, our research is sensitive to a wide range of cloud events, from those as brief as five hours to as long as 16 years," said co-author Robert Nikutta, a theorist at Andrés Bello University in Santiago, Chile.

For decades, astronomers explained the different observed properties of AGN by suggesting that a relatively uniform "doughnut" of dust and gas surrounds the black hole and extends several light-years away from it. Interference from this material is lowest when we happen to be looking into the doughnut from above or below and greatest when we view it from the side. Now astronomers are moving toward a new generation of models that view the doughnut as a collection of many individual clouds mostly distributed along its central plane, a view supported by the RXTE study.

One of the more unusual events the team turned up occurred in NGC 3783, a barred spiral galaxy located 143 million light-years away toward the constellation Centaurus. "In 2008, the AGN dimmed twice over a period of 11 days and did not reach its typical X-ray brightness within that period," said co-author Mirko Krumpe of the European Southern Observatory in Garching, Germany. "This could be caused by an elongated, filamentary cloud, perhaps one that is in the process of being torn apart by the black hole."

Francis Reddy
NASA's Goddard Space Flight Center, Greenbelt, Md.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/rxte-reveals-the-cloudy-cores-of-active-galaxies/#.UwUfgBBnjZ0

More articles from Physics and Astronomy:

nachricht Earthlike 'Star Wars' Tatooines May Be Common
31.03.2015 | University of Utah

nachricht Dusty substructure in a galaxy far far away
31.03.2015 | Max-Planck-Institut für Astrophysik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lizard activity levels can help scientists predict environmental change

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown...

Im Focus: Hannover Messe 2015: Saving energy with smart façades

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and...

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Skin tough

01.04.2015 | Materials Sciences

Methane monitoring method reveals high levels in Pennsylvania stream

01.04.2015 | Earth Sciences

Measurement of components in 3D under water

01.04.2015 | HANNOVER MESSE

VideoLinks
B2B-VideoLinks
More VideoLinks >>>