Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotating globular clusters

09.05.2014

Recent observations of globular clusters with the VIRUS-W instrument at the McDonald observatory revealed a rotation signal at the centre of these huge agglomerations of stars.

This finding is very surprising, as the astronomers expected that any central rotation should have been erased by now due to the old age of these clusters.


The core of the globular cluster Messier 13 is just 25 000 light-years away and measures about 145 light-years in diameter. It lies in the constellation Hercules and sometimes can even be seen with small binoculars.

Credit: ESA / Hubble und NASA


The VIRUS-W instrument (inset) mounted on the 2.7m telescope of the McDonald Observatory (right). The special configuration of the instrument allows the astronomers to simultaneously measure position and velocity for all stars in their field of view. © MPE

In addition, the astronomers from the Max Planck Institute for Extraterrestrial Physics and the University of Texas found that the rotation axis agrees with the slight elongation found for some of the clusters, indicating that this flattening is caused by rotation.

Globular clusters are ancient formations orbiting most galaxies, including our own Milky Way: they consist of up to a million old, metal-poor stars, which are tightly bound by gravity. Due to their old age and fairly spherical shape, with a strong concentration of stars towards the centre, they have historically been viewed as simple systems. However, new observations keep revealing surprising results.

“For all globular clusters in our sample we find a rotation signal in the centre – an astonishing result,” says Maximilian Fabricius, lead scientists of this study at the Max Planck Institute for Extraterrestrial Physics (MPE). “We did not expect this; originally we observed these globular clusters to measure their central velocity dispersions.” The velocity dispersion is a measure of the amount of random stellar motion in a cluster. Rotation, on the other hand, means that the cluster has an actual rotation axis around which more stars revolve in one way than the other. 

“Theory and numerical simulations of globular clusters indicate that any central rotation should be erased on relatively short timescales,” says Eva Noyola, co-author of this study at the University of Texas in Austin. “Because these globular clusters were formed billions of years ago, we would expect that any rotation signature would have been eradicated by now. Even though previous measurements showed some rotation in a handful of systems, they only probed the motion of stars in the outer regions.”

The new measurements of a dozen globular cluster cores were only possible with the help of the VIRUS-W instrument developed at MPE. This “integral field spectrograph” (IFU) allows the scientists to simultaneously measure more than 260 spectra in their field of view, determining the motion of stars to an accuracy of a few kilometres per second. That means that for a given globular cluster, one night at the Harlan J. Smith 2.7m Telescope of the McDonald observatory in Texas with an observing time of a few hours is enough to determine the velocity field at the core of the cluster. Such a project was not possible before VIRUS-W.

Traditionally, astronomers determined the line-of-sight velocities of cluster member stars one-by-one using high resolution spectrographs that can measure the Doppler shift of the stars. This, however, is painstakingly slow and very hard to do in the core of globular clusters. Therefore, so far, there have been no systematic studies of the kinematics of globular cluster cores. Even though the VIRUS-W instrument was originally developed to study the kinematics of nearby galaxies, the astronomers realized that the combination of a large field of view and a relatively high spectral resolution make this instrument a very efficient tool to also study stellar motions in globular clusters. 

There are about 150 globular clusters in the Milky Way and the astronomers selected 27 of them, which are observable with the McDonald telescope (i.e. in the northern sky) during one night. Between August 2012 and August 2013 they observed the first 11 globular clusters and now present their surprising results: all clusters show signatures of rotation.

Furthermore, the new velocity measurements are actually in remarkably good agreement with the flattening measured for the globular clusters in this sample. This seems to indicate that the central rotation drives the flattening for these objects rather than the influence of the Milky Way tidal field.

These findings raise interesting questions about the formation history and evolution of globular clusters – none of the current theoretical models predict such a ubiquitous and strong rotation. However, it is worth noting that the present sub-sample does not include any “core-collapsed” globular clusters yet.

Core-collapse is a process that might eradicate rotation. Future observations of the remaining clusters in the full sample will shed light on additional questions such as a possible correlation between rotation and the position of a globular cluster inside our galaxy.

Contact 

Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569
Email:pr@...

Max-Planck-Institut für extraterrestrische Physik, Garching 

 

Maximilian Fabricius

Optische und interpretative Astronomie

Phone:+49 89 3000 3779Fax:+49 89 30000 3569
Email:mxhf@...

Max-Planck-Institut für extraterrestrische Physik, Garching

  

Original publication

 
1
M. H. Fabricius, E. Noyola, S. Rukdee et al.
accepted by ApJ Letters

Dr. Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpe.mpg.de/5872915/News_20140507

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

A perfect sun-storm

28.09.2016 | Earth Sciences

New welding process joins dissimilar sheets better

28.09.2016 | Power and Electrical Engineering

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>