Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rotating globular clusters

09.05.2014

Recent observations of globular clusters with the VIRUS-W instrument at the McDonald observatory revealed a rotation signal at the centre of these huge agglomerations of stars.

This finding is very surprising, as the astronomers expected that any central rotation should have been erased by now due to the old age of these clusters.


The core of the globular cluster Messier 13 is just 25 000 light-years away and measures about 145 light-years in diameter. It lies in the constellation Hercules and sometimes can even be seen with small binoculars.

Credit: ESA / Hubble und NASA


The VIRUS-W instrument (inset) mounted on the 2.7m telescope of the McDonald Observatory (right). The special configuration of the instrument allows the astronomers to simultaneously measure position and velocity for all stars in their field of view. © MPE

In addition, the astronomers from the Max Planck Institute for Extraterrestrial Physics and the University of Texas found that the rotation axis agrees with the slight elongation found for some of the clusters, indicating that this flattening is caused by rotation.

Globular clusters are ancient formations orbiting most galaxies, including our own Milky Way: they consist of up to a million old, metal-poor stars, which are tightly bound by gravity. Due to their old age and fairly spherical shape, with a strong concentration of stars towards the centre, they have historically been viewed as simple systems. However, new observations keep revealing surprising results.

“For all globular clusters in our sample we find a rotation signal in the centre – an astonishing result,” says Maximilian Fabricius, lead scientists of this study at the Max Planck Institute for Extraterrestrial Physics (MPE). “We did not expect this; originally we observed these globular clusters to measure their central velocity dispersions.” The velocity dispersion is a measure of the amount of random stellar motion in a cluster. Rotation, on the other hand, means that the cluster has an actual rotation axis around which more stars revolve in one way than the other. 

“Theory and numerical simulations of globular clusters indicate that any central rotation should be erased on relatively short timescales,” says Eva Noyola, co-author of this study at the University of Texas in Austin. “Because these globular clusters were formed billions of years ago, we would expect that any rotation signature would have been eradicated by now. Even though previous measurements showed some rotation in a handful of systems, they only probed the motion of stars in the outer regions.”

The new measurements of a dozen globular cluster cores were only possible with the help of the VIRUS-W instrument developed at MPE. This “integral field spectrograph” (IFU) allows the scientists to simultaneously measure more than 260 spectra in their field of view, determining the motion of stars to an accuracy of a few kilometres per second. That means that for a given globular cluster, one night at the Harlan J. Smith 2.7m Telescope of the McDonald observatory in Texas with an observing time of a few hours is enough to determine the velocity field at the core of the cluster. Such a project was not possible before VIRUS-W.

Traditionally, astronomers determined the line-of-sight velocities of cluster member stars one-by-one using high resolution spectrographs that can measure the Doppler shift of the stars. This, however, is painstakingly slow and very hard to do in the core of globular clusters. Therefore, so far, there have been no systematic studies of the kinematics of globular cluster cores. Even though the VIRUS-W instrument was originally developed to study the kinematics of nearby galaxies, the astronomers realized that the combination of a large field of view and a relatively high spectral resolution make this instrument a very efficient tool to also study stellar motions in globular clusters. 

There are about 150 globular clusters in the Milky Way and the astronomers selected 27 of them, which are observable with the McDonald telescope (i.e. in the northern sky) during one night. Between August 2012 and August 2013 they observed the first 11 globular clusters and now present their surprising results: all clusters show signatures of rotation.

Furthermore, the new velocity measurements are actually in remarkably good agreement with the flattening measured for the globular clusters in this sample. This seems to indicate that the central rotation drives the flattening for these objects rather than the influence of the Milky Way tidal field.

These findings raise interesting questions about the formation history and evolution of globular clusters – none of the current theoretical models predict such a ubiquitous and strong rotation. However, it is worth noting that the present sub-sample does not include any “core-collapsed” globular clusters yet.

Core-collapse is a process that might eradicate rotation. Future observations of the remaining clusters in the full sample will shed light on additional questions such as a possible correlation between rotation and the position of a globular cluster inside our galaxy.

Contact 

Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569
Email:pr@...

Max-Planck-Institut für extraterrestrische Physik, Garching 

 

Maximilian Fabricius

Optische und interpretative Astronomie

Phone:+49 89 3000 3779Fax:+49 89 30000 3569
Email:mxhf@...

Max-Planck-Institut für extraterrestrische Physik, Garching

  

Original publication

 
1
M. H. Fabricius, E. Noyola, S. Rukdee et al.
accepted by ApJ Letters

Dr. Hannelore Hämmerle | Max-Planck-Institute
Further information:
http://www.mpe.mpg.de/5872915/News_20140507

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>