Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rotating globular clusters


Recent observations of globular clusters with the VIRUS-W instrument at the McDonald observatory revealed a rotation signal at the centre of these huge agglomerations of stars.

This finding is very surprising, as the astronomers expected that any central rotation should have been erased by now due to the old age of these clusters.

The core of the globular cluster Messier 13 is just 25 000 light-years away and measures about 145 light-years in diameter. It lies in the constellation Hercules and sometimes can even be seen with small binoculars.

Credit: ESA / Hubble und NASA

The VIRUS-W instrument (inset) mounted on the 2.7m telescope of the McDonald Observatory (right). The special configuration of the instrument allows the astronomers to simultaneously measure position and velocity for all stars in their field of view. © MPE

In addition, the astronomers from the Max Planck Institute for Extraterrestrial Physics and the University of Texas found that the rotation axis agrees with the slight elongation found for some of the clusters, indicating that this flattening is caused by rotation.

Globular clusters are ancient formations orbiting most galaxies, including our own Milky Way: they consist of up to a million old, metal-poor stars, which are tightly bound by gravity. Due to their old age and fairly spherical shape, with a strong concentration of stars towards the centre, they have historically been viewed as simple systems. However, new observations keep revealing surprising results.

“For all globular clusters in our sample we find a rotation signal in the centre – an astonishing result,” says Maximilian Fabricius, lead scientists of this study at the Max Planck Institute for Extraterrestrial Physics (MPE). “We did not expect this; originally we observed these globular clusters to measure their central velocity dispersions.” The velocity dispersion is a measure of the amount of random stellar motion in a cluster. Rotation, on the other hand, means that the cluster has an actual rotation axis around which more stars revolve in one way than the other. 

“Theory and numerical simulations of globular clusters indicate that any central rotation should be erased on relatively short timescales,” says Eva Noyola, co-author of this study at the University of Texas in Austin. “Because these globular clusters were formed billions of years ago, we would expect that any rotation signature would have been eradicated by now. Even though previous measurements showed some rotation in a handful of systems, they only probed the motion of stars in the outer regions.”

The new measurements of a dozen globular cluster cores were only possible with the help of the VIRUS-W instrument developed at MPE. This “integral field spectrograph” (IFU) allows the scientists to simultaneously measure more than 260 spectra in their field of view, determining the motion of stars to an accuracy of a few kilometres per second. That means that for a given globular cluster, one night at the Harlan J. Smith 2.7m Telescope of the McDonald observatory in Texas with an observing time of a few hours is enough to determine the velocity field at the core of the cluster. Such a project was not possible before VIRUS-W.

Traditionally, astronomers determined the line-of-sight velocities of cluster member stars one-by-one using high resolution spectrographs that can measure the Doppler shift of the stars. This, however, is painstakingly slow and very hard to do in the core of globular clusters. Therefore, so far, there have been no systematic studies of the kinematics of globular cluster cores. Even though the VIRUS-W instrument was originally developed to study the kinematics of nearby galaxies, the astronomers realized that the combination of a large field of view and a relatively high spectral resolution make this instrument a very efficient tool to also study stellar motions in globular clusters. 

There are about 150 globular clusters in the Milky Way and the astronomers selected 27 of them, which are observable with the McDonald telescope (i.e. in the northern sky) during one night. Between August 2012 and August 2013 they observed the first 11 globular clusters and now present their surprising results: all clusters show signatures of rotation.

Furthermore, the new velocity measurements are actually in remarkably good agreement with the flattening measured for the globular clusters in this sample. This seems to indicate that the central rotation drives the flattening for these objects rather than the influence of the Milky Way tidal field.

These findings raise interesting questions about the formation history and evolution of globular clusters – none of the current theoretical models predict such a ubiquitous and strong rotation. However, it is worth noting that the present sub-sample does not include any “core-collapsed” globular clusters yet.

Core-collapse is a process that might eradicate rotation. Future observations of the remaining clusters in the full sample will shed light on additional questions such as a possible correlation between rotation and the position of a globular cluster inside our galaxy.


Dr. Hannelore Hämmerle

MPE Pressesprecherin

Phone:+49 (0)89 30000 3980Fax:+49 (0)89 30000 3569

Max-Planck-Institut für extraterrestrische Physik, Garching 


Maximilian Fabricius

Optische und interpretative Astronomie

Phone:+49 89 3000 3779Fax:+49 89 30000 3569

Max-Planck-Institut für extraterrestrische Physik, Garching


Original publication

M. H. Fabricius, E. Noyola, S. Rukdee et al.
accepted by ApJ Letters

Dr. Hannelore Hämmerle | Max-Planck-Institute
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>