Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta-Mission: "Chury's" nucleus is non-magnetic

15.04.2015

Knowledge about the magnetic properties of the planets and other solar system bodies allows for insight into their composition, dynamics, and history.

After the Rosetta-Lander Philae's amazing landing on the surface of comet 67P/Churyumov-Gerasimenko in November 2014, the results of the magnetic field measurements of the two instruments from Braunschweig are now available.

The geophysicists from Braunschweig present their newest results in the journal "Science" as well as at the European Geosciences Union General Assembly (EGU) on April 14th, 2015 in Vienna.

"Churyumov-Gerasimenko is remarkably non-magnetic", says Dr. Hans-Ulrich Auster, leader of the lander-magnetometer team from the Institut für Geophysik und extraterrestrische Physik (IGEP) at the TU Brauschweig.

Due to its small size, it was not expected to find signs of a dynamo process inside the comet's core, like the process that drives the Earth's magnetic field. However, it was speculated that iron rich, magnetic dust particles could have been aligned along the magnetic field 4.5 billion years ago, which would present as a remnant magnetization.

But the Measurements of the ROMAP magnetometer from Braunschweig on board lander "Philae" show only magnetic fields on the surface that are very similar to those measured by the Rosetta orbiter magnetometer RPC-MAG.

"That fact that the measurements in orbit and at the surface are remarkably similar is irrefutable evidence that the surface magnetic field is mirroring the properties of the magnetic field in the cometary coma", explains IGEP scientist Dr. Ingo Richter, instrument manager of the orbiter magnetometer.

Comet 67P "sings" at the surface, too

The oscillations that are being detected since August 2014, called the "song" of the comet by the scientists, is also dominating the magnetic field directly above the surface. The contribution of the comet's intrinsic magnetic field is well below 2nT, or about a fiftythousandth of Earth's magnetic field.

The combination of data from orbit and at the surface as well as the mutiple touchdowns make it possible to conclude that magnetic fields in the region where this comet was formed did not play a significant role in compacting decimeter-sized grains", says Prof. Dr. Karl-Heinz Glaßmeier, leader of the Rosetta orbiter magnetometer team. As strong magnetic fields play an important role in understanding the formation of the solar system, the scientists are looking forward to the discussions with their international colleagues.

Further Information

“The non-magnetic nucleus of Comet 67P/Churyumov-Gerasimenko,” by H.-U. Auster et al. is published in Science Express on 14 April. [http://www.sciencemag.org/lookup/doi/10.1126/science.aaa5102]

The results were also presented on 14 April at the European Geosciences Union (EGU) General Assembly 2015 in Vienna, Austria, during a dedicated Rosetta mission press briefing. [http://www.egu2015.eu]

Contact

Prof. Karl-Heinz Glaßmeier
Dr. Hans-Ulrich Auster
Institut für Geophysik und extraterrestrische Physik
Technische Universität Braunschweig
Mendelssohnstraße 3
38106 Braunschweig
Tel.: 0531 391-5214
E-Mail: kh.glassmeier@tu-braunschweig.de
www.igep.tu-bs.de

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=8809
http://www.sciencemag.org/lookup/doi/10.1126/science.aaa5102
http://client.cntv.at/egu2015/PC1
http://blogs.esa.int/rosetta/

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>