Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rosetta-Mission: "Chury's" nucleus is non-magnetic


Knowledge about the magnetic properties of the planets and other solar system bodies allows for insight into their composition, dynamics, and history.

After the Rosetta-Lander Philae's amazing landing on the surface of comet 67P/Churyumov-Gerasimenko in November 2014, the results of the magnetic field measurements of the two instruments from Braunschweig are now available.

The geophysicists from Braunschweig present their newest results in the journal "Science" as well as at the European Geosciences Union General Assembly (EGU) on April 14th, 2015 in Vienna.

"Churyumov-Gerasimenko is remarkably non-magnetic", says Dr. Hans-Ulrich Auster, leader of the lander-magnetometer team from the Institut für Geophysik und extraterrestrische Physik (IGEP) at the TU Brauschweig.

Due to its small size, it was not expected to find signs of a dynamo process inside the comet's core, like the process that drives the Earth's magnetic field. However, it was speculated that iron rich, magnetic dust particles could have been aligned along the magnetic field 4.5 billion years ago, which would present as a remnant magnetization.

But the Measurements of the ROMAP magnetometer from Braunschweig on board lander "Philae" show only magnetic fields on the surface that are very similar to those measured by the Rosetta orbiter magnetometer RPC-MAG.

"That fact that the measurements in orbit and at the surface are remarkably similar is irrefutable evidence that the surface magnetic field is mirroring the properties of the magnetic field in the cometary coma", explains IGEP scientist Dr. Ingo Richter, instrument manager of the orbiter magnetometer.

Comet 67P "sings" at the surface, too

The oscillations that are being detected since August 2014, called the "song" of the comet by the scientists, is also dominating the magnetic field directly above the surface. The contribution of the comet's intrinsic magnetic field is well below 2nT, or about a fiftythousandth of Earth's magnetic field.

The combination of data from orbit and at the surface as well as the mutiple touchdowns make it possible to conclude that magnetic fields in the region where this comet was formed did not play a significant role in compacting decimeter-sized grains", says Prof. Dr. Karl-Heinz Glaßmeier, leader of the Rosetta orbiter magnetometer team. As strong magnetic fields play an important role in understanding the formation of the solar system, the scientists are looking forward to the discussions with their international colleagues.

Further Information

“The non-magnetic nucleus of Comet 67P/Churyumov-Gerasimenko,” by H.-U. Auster et al. is published in Science Express on 14 April. []

The results were also presented on 14 April at the European Geosciences Union (EGU) General Assembly 2015 in Vienna, Austria, during a dedicated Rosetta mission press briefing. []


Prof. Karl-Heinz Glaßmeier
Dr. Hans-Ulrich Auster
Institut für Geophysik und extraterrestrische Physik
Technische Universität Braunschweig
Mendelssohnstraße 3
38106 Braunschweig
Tel.: 0531 391-5214

Weitere Informationen:

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>