Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocket Launched Into Northern Lights to Illuminate GPS Effects

22.02.2012
As the brilliant colors of the aurora borealis, or northern lights, delight skygazers, Cornell University researchers are discovering how their physics affects satellite signals here on Earth.

A NASA-funded collaborative research team led by Steven Powell, Cornell senior engineer in electrical and computer engineering, launched a sounding rocket from Alaska’s Poker Flat Research Range on Saturday, Feb. 18 at 8:41 p.m. Alaska Standard Time (Sunday, Feb. 19, 2012 at 12:41 a.m. EST) to collect data straight from the heart of the aurora.

The project – the Magnetosphere-Ionosphere Coupling in the Alfven resonator (MICA) mission – involves 60 scientists, engineers, technicians, and graduate students from several institutions and NASA. From Cornell they include Powell, principal investigator for the mission; David Hysell, co-investigator and professor of earth and atmospheric sciences; Robert Miceli and Brady O’Hanlon, graduate students in electrical and computer engineering; and Mark Psiaki, professor of mechanical and aerospace engineering. Researchers from Dartmouth College, the University of New Hampshire, the University of Oslo (Norway), Southwest Research Institute, and the University of Alaska Fairbanks also are making significant contributions to the mission.

“We’re investigating what’s called space weather,” said Powell, who along with Hysell, Miceli and O’Hanlon, has been stationed at the rocket launch site, 30 miles north of Fairbanks, since the end of January. “Space weather is caused by the charged particles that come from the sun and interact with the Earth’s magnetic field. We don’t directly feel those effects as humans, but our electronic systems do.” These include global positioning systems; (GPS) one of the scientists’ main goals is to investigate the effects of space weather on GPS satellites.

The rocket is a 46-foot Terrier-Black Brant model that was sent arcing through the aurora 217 miles above Earth, sending a stream of real-time data back before landing 200 miles downrange. Instruments on board sampled electrons in the upper atmosphere that are affected by a form of electromagnetic energy called Alfven waves. These waves are thought to be a key driver of “discrete” aurora — the typical, well defined and famously shimmering lights that stretch across the horizon.

The rocket payload separated into two parts once launched. One extended antennae to measure electric fields generated by the aurora. Other antennae and sensors measured electrons and ions interacting with the Earth’s magnetic field. In this period of high sun activity, called solar maximum, gases from the sun are likely interfering with GPS transmissions, satellite Internet and other signals.

“We are becoming more dependent on these signals,” Powell said. “This will help us better understand how satellite signals get degraded by space weather and how we can mitigate those effects in new and improved GPS receivers.”

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>