Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rocket Launched Into Northern Lights to Illuminate GPS Effects

As the brilliant colors of the aurora borealis, or northern lights, delight skygazers, Cornell University researchers are discovering how their physics affects satellite signals here on Earth.

A NASA-funded collaborative research team led by Steven Powell, Cornell senior engineer in electrical and computer engineering, launched a sounding rocket from Alaska’s Poker Flat Research Range on Saturday, Feb. 18 at 8:41 p.m. Alaska Standard Time (Sunday, Feb. 19, 2012 at 12:41 a.m. EST) to collect data straight from the heart of the aurora.

The project – the Magnetosphere-Ionosphere Coupling in the Alfven resonator (MICA) mission – involves 60 scientists, engineers, technicians, and graduate students from several institutions and NASA. From Cornell they include Powell, principal investigator for the mission; David Hysell, co-investigator and professor of earth and atmospheric sciences; Robert Miceli and Brady O’Hanlon, graduate students in electrical and computer engineering; and Mark Psiaki, professor of mechanical and aerospace engineering. Researchers from Dartmouth College, the University of New Hampshire, the University of Oslo (Norway), Southwest Research Institute, and the University of Alaska Fairbanks also are making significant contributions to the mission.

“We’re investigating what’s called space weather,” said Powell, who along with Hysell, Miceli and O’Hanlon, has been stationed at the rocket launch site, 30 miles north of Fairbanks, since the end of January. “Space weather is caused by the charged particles that come from the sun and interact with the Earth’s magnetic field. We don’t directly feel those effects as humans, but our electronic systems do.” These include global positioning systems; (GPS) one of the scientists’ main goals is to investigate the effects of space weather on GPS satellites.

The rocket is a 46-foot Terrier-Black Brant model that was sent arcing through the aurora 217 miles above Earth, sending a stream of real-time data back before landing 200 miles downrange. Instruments on board sampled electrons in the upper atmosphere that are affected by a form of electromagnetic energy called Alfven waves. These waves are thought to be a key driver of “discrete” aurora — the typical, well defined and famously shimmering lights that stretch across the horizon.

The rocket payload separated into two parts once launched. One extended antennae to measure electric fields generated by the aurora. Other antennae and sensors measured electrons and ions interacting with the Earth’s magnetic field. In this period of high sun activity, called solar maximum, gases from the sun are likely interfering with GPS transmissions, satellite Internet and other signals.

“We are becoming more dependent on these signals,” Powell said. “This will help us better understand how satellite signals get degraded by space weather and how we can mitigate those effects in new and improved GPS receivers.”

Joe Schwartz | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>