Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want ripples on your icicles?

10.10.2013
University of Toronto scientists suggest adding salt

Though it's barely the beginning of autumn, scientists at the University of Toronto are one step closer to explaining why winter's icicles form with Michelin Man-like ripples on their elongated shapes.


This is a natural ripply icicle, collected to measure water composition.

Credit: Stephen Morris

Experimental physicist Stephen Morris and PhD candidate Antony Szu-Han Chen were spurred to investigate by the ripples that appear around the circumference of icicles that occur naturally. It has been theorized that the ripples are the result of surface tension effects in the thin water film that flows over the ice as it forms. Their investigation revealed that the actual culprit is salt.

"Nobody has systematically investigated what causes the ripples so we began growing them in the lab," said Chen, lead author of a paper published online this week in New Journal of Physics. Accounting for key factors that influence the shape of an icicle as it forms in nature – ambient temperature, flow rate of water and the motion of the air surrounding it – the researchers experimented with the composition of the source water.

"We had already tried Toronto tap water and found that it formed ripply laboratory icicles, when distilled water didn't," said Morris. "We also confirmed that melted rippled icicles taken from Toronto garages were very slightly salty, so that's what led us to pursue the composition factor."

Using pure distilled water, distilled water with small quantities of sodium chloride added, and Toronto tap water – which contains sodium chloride as well as many other impurities – they produced 67 samples grown under a broad range of conditions. The evolution of the icicle shapes over time was acquired from digital images using detection of their edges, which were then analyzed with computer image processing.

Ripple growth was not observed on distilled water icicles, whereas saltier icicles showed clear ripples that appear in a patchy way and sometimes grew as large as a few millimetres. The ripples were seen to move slowly upward during the icicle growth, though the researchers note that both the speed and direction of the ripple motion could vary depending on the concentration of dissolved salt.

Morris and Chen found that ripples only became apparent at the remarkably low salinity of the water with 20 mg of salt per litre. This level, in fact, is a considerably lower level of impurity than found in common tap water.

"We even added a non-ionic ingredient to the distilled water to reduce the surface tension of the thin film of water flowing over the icicle, and it didn't produce ripples," said Chen. "Instead, ripples emerge only on icicles grown from water with dissolved ionic impurities."

"Our motivation is pure curiosity about natural patterns, but the study of ice growth has serious applications, including ice accumulation on airplanes, ships and power lines," said Morris. "This result is totally unexpected, not just by us before we did this, but by theorists and experimentalists in our field who study ice dynamics and pattern formation."

"No theory accounts for the effect of salt, so the shape of icicles and the reason for their ripples are still mysteries. Except we now know that a little salt is required in the recipe."

The findings are reported in the paper "On the origin and evolution of icicle ripples". The research is supported by funding from the Natural Sciences and Engineering Research Council of Canada.

Note to media: Contact Sean Bettam at s.bettam@utoronto.ca for images and videos of the research described here.

MEDIA CONTACTS:

Stephen Morris
Department of Physics
University of Toronto
smorris@physics.utoronto.ca
416-978-6810
Antony Szu-Han Chen
Department of Physics
University of Toronto
aschen@physics.utoronto.ca
416-978-0137
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>