Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rife with hype, exoplanet study needs patience and refinement (PNAS)

19.02.2014
Imagine someone spent months researching new cities to call home using low-resolution images of unidentified skylines.

The pictures were taken from several miles away with a camera intended for portraits, and at sunset. From these fuzzy snapshots, that person claims to know the city’s air quality, the appearance of its buildings, and how often it rains.


Exoplanet transiting in front of its star. Princeton’s Adam Burrows argues against drawing too many conclusions about such distant objects with today’s technologies. Photo credit: ESA/C. Carreau

This technique is similar to how scientists often characterize the atmosphere — including the presence of water and oxygen — of planets outside of Earth’s solar system, known as exoplanets, according to a review of exoplanet research published in the Proceedings of the National Academy of Sciences.

A planet’s atmosphere is the gateway to its identity, including how it was formed, how it developed and whether it can sustain life, stated Adam Burrows, author of the review and a Princeton University professor of astrophysical sciences.

But the dominant methods for studying exoplanet atmospheres are not intended for objects as distant, dim and complex as planets trillions of miles from Earth, Burrows said. They were instead designed to study much closer or brighter objects, such as planets in Earth’s solar system and stars.

Nonetheless, scientific reports and the popular media brim with excited depictions of Earth-like planets ripe for hosting life and other conclusions that are based on vague and incomplete data, Burrows wrote in the first in a planned series of essays that examine the current and future study of exoplanets. Despite many trumpeted results, few “hard facts” about exoplanet atmospheres have been collected since the first planet was detected in 1992, and most of these data are of “marginal utility.”

The good news is that the past 20 years of study have brought a new generation of exoplanet researchers to the fore that is establishing new techniques, technologies and theories. As with any relatively new field of study, fully understanding exoplanets will require a lot of time, resources and patience, Burrows said.

“Exoplanet research is in a period of productive fermentation that implies we’re doing something new that will indeed mature,” Burrows said. “Our observations just aren’t yet of a quality that is good enough to draw the conclusions we want to draw.

“There’s a lot of hype in this subject, a lot of irrational exuberance. Popular media have characterized our understanding as better than it actually is,” he said. “They’ve been able to generate excitement that creates a positive connection between the astrophysics community and the public at large, but it’s important not to hype conclusions too much at this point.”

The majority of data on exoplanet atmospheres come from low-resolution photometry, which captures the variation in light and radiation an object emits, Burrows reported. That information is used to determine a planet’s orbit and radius, but its clouds, surface, and rotation, among other factors, can easily skew the results. Even newer techniques such as capturing planetary transits — which is when a planet passes in front of its star, and was lauded by Burrows as an unforeseen “game changer” when it comes to discovering new planets — can be thrown off by a thick atmosphere and rocky planet core.

All this means that reliable information about a planet can be scarce, so scientists attempt to wring ambitious details out of a few data points. “We have a few hard-won numbers and not the hundreds of numbers that we need,” Burrows said. “We have in our minds that exoplanets are very complex because this is what we know about the planets in our solar system, but the data are not enough to constrain even a fraction of these conceptions.”

Burrows emphasizes that astronomers need to acknowledge that they will never achieve a comprehensive understanding of exoplanets through the direct-observation, stationary methods inherited from the exploration of Earth’s neighbors. He suggests that exoplanet researchers should acknowledge photometric interpretations as inherently flawed and ambiguous. Instead, the future of exoplanet study should focus on the more difficult but comprehensive method of spectrometry, wherein the physical properties of objects are gauged by the interaction of its surface and elemental features with light wavelengths, or spectra. Spectrometry has been used to determine the age and expansion of the universe.

Existing telescopes and satellites are likewise vestiges of pre-exoplanet observation. Burrows calls for a mix of small, medium and large initiatives that will allow the time and flexibility scientists need to develop tools to detect and analyze exoplanet spectra. He sees this as a challenge in a research environment that often puts quick-payback results over deliberate research and observation. Once scientists obtain high-quality spectral data, however, Burrows predicted, “Many conclusions reached recently about exoplanet atmospheres will be overturned.”

“The way we study planets out of the solar system has to be radically different because we can’t ‘go’ to those planets with satellites or probes,” Burrows said. “It’s much more an observational science. We have to be detectives. We’re trying to find clues and the best clues since the mid-19th century have been in spectra. It’s the only means of understanding the atmosphere of these planets.”

A longtime exoplanet researcher, Burrows predicted the existence of “hot-Jupiter” planets — gas planets similar to Jupiter but orbiting very close to the parent star — in a paper in the journal Nature months before the first such planet, 51 Pegasi b, was discovered in 1995.

Citation: Burrows, Adam S. 2014. Spectra as windows into exoplanet atmospheres. Proceedings of the National Academy of Sciences. Article first published online: Jan. 13, 2014. DOI: 10.1073/pnas.1304208111

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>