Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get rhythm -- why the key to finding music you like is rhythm, not genre

20.05.2010
So close and yet so wrong – you might love heavy metal like Metallica but your music platform suggests you should also like the Sixties sound of The Doors, simply because both bands are classified as rock.

New research published today, Thursday, 20 May, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), shows that searching for the temporal aspects of songs – their rhythm – might be better to find music you like than using current automatic genre classifications.

By studying similar and different characteristics of specific rhythmic durations and the occurrence of rhythmic sequences, the group of Brazilian researchers has found that it is possible to correctly identify the musical genres of specific musical pieces.

The researchers studied four musical genres – rock, blues, bossa nova and reggae – looking at 100 songs from each category, analysing the most representative sequences of each genre-specific rhythm such as the 12 bar theme in blues, which means that the song is divided into 12 bars – or measures - with a given chord sequence.

Using hierarchical clustering, a visual representation of rhythmic frequencies, the researchers were able to discriminate between songs and come up with a possibly novel way of defining musical genres.

As the researchers write, "By showing that rhythm represents a surprisingly distinctive signature of some of the main musical genres, the work suggests that rhythm-based features could be more comprehensively incorporated as resources for searching in music platforms.

Musical genre classification is a nontrivial task even for musician experts, since often a song can be assigned to more than one single genre. With our proposed method, new sub-genres (for example, rock-blues) can arise from original ones. Therefore, we observed a significant improvement in the supervised classification performance."

The next step, as suggested by the researchers, would be to include further aspects such as the intensity of the beat in future research, which could increase accurate genre identification even more.

The researchers' paper can be downloaded from Thursday, 20 May 2010 here: http://iopscience.iop.org/1367-2630/12/5/053030

Lena Weber | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>