Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get rhythm -- why the key to finding music you like is rhythm, not genre

20.05.2010
So close and yet so wrong – you might love heavy metal like Metallica but your music platform suggests you should also like the Sixties sound of The Doors, simply because both bands are classified as rock.

New research published today, Thursday, 20 May, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society), shows that searching for the temporal aspects of songs – their rhythm – might be better to find music you like than using current automatic genre classifications.

By studying similar and different characteristics of specific rhythmic durations and the occurrence of rhythmic sequences, the group of Brazilian researchers has found that it is possible to correctly identify the musical genres of specific musical pieces.

The researchers studied four musical genres – rock, blues, bossa nova and reggae – looking at 100 songs from each category, analysing the most representative sequences of each genre-specific rhythm such as the 12 bar theme in blues, which means that the song is divided into 12 bars – or measures - with a given chord sequence.

Using hierarchical clustering, a visual representation of rhythmic frequencies, the researchers were able to discriminate between songs and come up with a possibly novel way of defining musical genres.

As the researchers write, "By showing that rhythm represents a surprisingly distinctive signature of some of the main musical genres, the work suggests that rhythm-based features could be more comprehensively incorporated as resources for searching in music platforms.

Musical genre classification is a nontrivial task even for musician experts, since often a song can be assigned to more than one single genre. With our proposed method, new sub-genres (for example, rock-blues) can arise from original ones. Therefore, we observed a significant improvement in the supervised classification performance."

The next step, as suggested by the researchers, would be to include further aspects such as the intensity of the beat in future research, which could increase accurate genre identification even more.

The researchers' paper can be downloaded from Thursday, 20 May 2010 here: http://iopscience.iop.org/1367-2630/12/5/053030

Lena Weber | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>