Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RHESSI Will Use Venus Transit to Improve Measurements of the Sun's Diameter

05.06.2012
The RHESSI (Ramaty High Energy Solar Spectroscopic Imager) satellite focuses on the highest energy x-rays and gamma-rays produced by the sun, helping to observe solar flares of all shapes and sizes.

The satellite is pointed toward the sun, and constantly in rotation, which provides a serendipitous bit of side research: by monitoring the limb of the sun on its four second rotation cycle, RHESSI’s Solar Aspect System (SAS) has produced ten years worth of precise measurements of the sun's diameter.


Artist rendition of RHESSI spacecraft in orbit. Credit: NASA

This has already provided scientists with one of the most accurate measurements of what's called the oblateness of the sun, which is the difference between the diameter from pole to pole and the equatorial diameter. With the new data obtained during the Venus Transit on June 5-6, 2012, the RHESSI team hopes to improve the knowledge of the exact shape of the sun and provide a more accurate measure of the diameter than has previously been obtained.

For one thing, the sharpness of the Venus disk as it crosses the sun will help determine the detailed optical properties of the telescope and calibrate the instrument’s so-called plate scale, the exact angular size of each pixel. With this improvement in hand, RHESSI can re-calibrate its already highly accurate observations of the sun's horizon. To further this aim, the science team has set the instrument to look at 64 pixels across the sun's limb, rather than its customary four.

The RHESSI team has hopes that they may be able to provide an unprecedentedly accurate measurement of the sun's size.

With ten years of solar diameter measurements as well as observations of the Venus Transit in 2004 – a time when the sun's activity was decreasing toward solar minimum, as opposed to now when the solar activity is increasing as it moves toward solar maximum predicted for 2013 – the science team hopes to compare the sun's size then and now to see if perhaps it varies with the solar cycle.

Karen C. Fox
NASA's Goddard Space Flight Center

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/sunearth/news/rhessi-venustransit.html

Further reports about: IMPROVE RHESSI Solar Decathlon TRANSIT diameter measurements

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>