Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary method generates new template for microelectronics

25.02.2009
Copolymer may enable 10 times more computer memory

Researchers say a newly tested method for producing super dense, defect-free, thin polymer films is the fastest, most efficient method ever achieved and it may dramatically improve microelectronic storage capabilities such as those in computer memory sticks.

In the February 20 issue of the journal Science, researchers at the University of Massachusetts Amherst and their colleagues at the University of California Berkeley, report how they designed a new way to guide the self-assembly of the material used to store computer memory, layered block copolymers, and generate up to 10 times more storage space than similarly sized copolymers.

The researchers say they developed a defect-free method that can generate more than 10-terabit-per-square-inch copolymer where other efforts achieved at most one terabit per square inch. A terabit is an information storage unit equal to one trillion bits.

"We can generate nearly perfect arrays over macroscopic surfaces where the density is over 15 times higher than anything achieved before," said Thomas Russell director of the UMass Materials Research Science and Engineering Center. He co-led the research with Ting Xu, a member of the Department of Materials Science and Engineering at Berkeley. "We applied a simple concept to solve several problems at once, and it really worked out," Russell said.

The concept involved stacking atoms more closely together than previously thought possible to produce the highest density copolymer ever achieved, one capable of storing more information than previous copolymers. Researchers used surface ridges of a base crystal to guide the assembly very much like using the corrugations in cardboard to direct how closely marbles can be packed together.

For the copolymer's base layer, the researchers used commercially-available sapphire wafers, which start out flat. After heating them from 1300 to 1500 degrees Celsius for 24 hours, the wafer's surface reorganized into a sawtooth topography with an inherent orientation. A thin copolymer film layer then was applied causing the underlying sawtooth corrugations to guide the film's self-assembly in a highly-ordered way to form an ultra-dense hexagonal, or honeycomb, crystalline lattice.

Additionally, by varying the annealing temperature, the scientists were able to change the angle and height of the sawteeth and the depth of the troughs between their peaks. The result enabled researchers to produce more densely packed troughs, which is where computer memory is stored.

The work was supported by the National Science Foundation and the Department of Energy's Office of Basic Energy Science.

"I expect this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others," said Russell.

He points out most previous efforts to create a well-ordered base material onto which electronic information is stored topped out at 15 nanometers for the smallest achievable pattern size. But "we've shattered that barrier and I think we can go farther," Russell said.

"This research by the teams at UMass Amerherst and Berkeley represents a significant breakthrough in the use of polymer self-assembly to create a high density of addressable locations in a thin film," said NSF program manager William J. Brittain. "Most significantly, the simple crystalline lattice used as the template may serve as a revolutionary step for a new generation of computer memory."

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>