Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary method generates new template for microelectronics

25.02.2009
Copolymer may enable 10 times more computer memory

Researchers say a newly tested method for producing super dense, defect-free, thin polymer films is the fastest, most efficient method ever achieved and it may dramatically improve microelectronic storage capabilities such as those in computer memory sticks.

In the February 20 issue of the journal Science, researchers at the University of Massachusetts Amherst and their colleagues at the University of California Berkeley, report how they designed a new way to guide the self-assembly of the material used to store computer memory, layered block copolymers, and generate up to 10 times more storage space than similarly sized copolymers.

The researchers say they developed a defect-free method that can generate more than 10-terabit-per-square-inch copolymer where other efforts achieved at most one terabit per square inch. A terabit is an information storage unit equal to one trillion bits.

"We can generate nearly perfect arrays over macroscopic surfaces where the density is over 15 times higher than anything achieved before," said Thomas Russell director of the UMass Materials Research Science and Engineering Center. He co-led the research with Ting Xu, a member of the Department of Materials Science and Engineering at Berkeley. "We applied a simple concept to solve several problems at once, and it really worked out," Russell said.

The concept involved stacking atoms more closely together than previously thought possible to produce the highest density copolymer ever achieved, one capable of storing more information than previous copolymers. Researchers used surface ridges of a base crystal to guide the assembly very much like using the corrugations in cardboard to direct how closely marbles can be packed together.

For the copolymer's base layer, the researchers used commercially-available sapphire wafers, which start out flat. After heating them from 1300 to 1500 degrees Celsius for 24 hours, the wafer's surface reorganized into a sawtooth topography with an inherent orientation. A thin copolymer film layer then was applied causing the underlying sawtooth corrugations to guide the film's self-assembly in a highly-ordered way to form an ultra-dense hexagonal, or honeycomb, crystalline lattice.

Additionally, by varying the annealing temperature, the scientists were able to change the angle and height of the sawteeth and the depth of the troughs between their peaks. The result enabled researchers to produce more densely packed troughs, which is where computer memory is stored.

The work was supported by the National Science Foundation and the Department of Energy's Office of Basic Energy Science.

"I expect this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others," said Russell.

He points out most previous efforts to create a well-ordered base material onto which electronic information is stored topped out at 15 nanometers for the smallest achievable pattern size. But "we've shattered that barrier and I think we can go farther," Russell said.

"This research by the teams at UMass Amerherst and Berkeley represents a significant breakthrough in the use of polymer self-assembly to create a high density of addressable locations in a thin film," said NSF program manager William J. Brittain. "Most significantly, the simple crystalline lattice used as the template may serve as a revolutionary step for a new generation of computer memory."

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>