Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing secrets of exploding clusters

24.02.2014
The investigation of cluster explosion dynamics under intense extreme-ultraviolet (XUV) pulses has so far been limited to large scale facilities like free-electron lasers. In a recent publication it was shown that the research on clusters is now also possible with intense XUV pulses obtained in a laboratory-scale environment with a newly developed light source that makes use of the high-order harmonic generation process. For the first time, the formation of high-lying Rydberg atoms by electron-ion recombination during the cluster expansion initially triggered by an intense XUV pulse was identified, giving new insight into the cluster dissociation process.

An intense light pulse interacting with a weakly bound van der Waals cluster consisting of thousands of atoms can eventually lead to the explosion of the cluster and its complete disintegration. During this process, novel ionization mechanisms occur that are not observed in atoms. With a light pulse that is intense enough, many electrons are removed from their atoms that can move within the cluster, where they form a plasma with the ions on the nanometer scale, a so called nanoplasma. Due to collisions between the electrons, some of them may eventually gain sufficient energy to leave the cluster. A large part of the electrons, however, will remain confined to the cluster. It was theoretically predicted that electrons and ions in the nanoplasma recombine to form Rydberg atoms, however, an experimental proof of this hypothesis is still missing. Previous experiments were carried out at large scale facilities like free-electron lasers that have sizes from a few hundred meters to a few kilometers showing already surprising results such as the formation of very high charge states when an intense XUV pulse interacts with the cluster. However, the accessibility to such sources is strongly limited, and the experimental conditions are extremely challenging. The availability of intense light pulses in the extreme-ultraviolet range from an alternative source is therefore important to gain a better understanding of the various processes occurring in clusters and other extended systems such as biomolecules exposed to intense XUV pulses.


Time-of-flight spectrum for xenon atoms and clusters with an average size of 36.000 atoms.


Left side: 2D electron momentum map of argon clusters showing a pronounced central distribution attributed to the ionization of Rydberg atoms with the detector field


Scientists from the Max-Born-Institut have developed a new light source that is based on the process of high-order harmonic generation. In the experiment, an intense pulse in the extreme-ultraviolet range with a duration of 15 fs (1fs=10-15s) interacted with clusters consisting of argon or xenon atoms. In the current issue of Physical Review Letters (Vol. 112-073003 publ. 20 February 2014) http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003 Bernd Schütte, Marc Vrakking and Arnaud Rouzée present the results of these studies, which are in very good agreement with previously obtained results from free-electron lasers: the formation of a nanoplasma was inferred by measuring the kinetic energy distributions of electrons formed in the cluster ionization process, showing a characteristic plateau up to a maximum kinetic energy given by the kinetic energy resulting from photoionization of an individual atom. In collaboration with the theoreticians Mathias Arbeiter and Thomas Fennel from the University of Rostock, it was possible to numerically simulate the ionization processes in the cluster and to reproduce the experimental results. In addition, by using the velocity map imaging technique, a yet undiscovered distribution of very slow electrons was observed and attributed the formation of high-lying Rydberg atoms by electron-ion recombination processes during the cluster expansion. Since the binding energies of the electrons are very small, the DC detector electric field used in the experiment was strong enough to ionize these Rydberg atoms, leading to the emission of low energy electrons. This process is also known as frustrated recombination and could now be confirmed experimentally for the first time. The current findings may also explain why in recent experiments using intense X-ray pulses, high charge states up to Xe26+ were observed in clusters, although a large number of recombination processes is expected to take place. Moreover, the opportunity to carry out this type of experiment with a high-order harmonic source makes it possible in the future to perform pump-probe experiments in clusters and other extended systems with a time resolution down to the attosecond range.


Full citation:
Bernd Schütte, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée, "Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source", Physical Review Letters 112, (2014)

... more about:
»clusters »electrons »kinetic »lasers »processes


Contact:
Dr. Bernd Schütte, +49 (0)30 6392 1248
Prof. Marc J. J. Vrakking, +49 (0)30 6392 1200
Dr. Arnaud Rouzée, +49 (0)30 6392 1240


Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)
Max-Born-Str. 2A
12489 Berlin

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: clusters electrons kinetic lasers processes

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>