Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Revealing secrets of exploding clusters

The investigation of cluster explosion dynamics under intense extreme-ultraviolet (XUV) pulses has so far been limited to large scale facilities like free-electron lasers. In a recent publication it was shown that the research on clusters is now also possible with intense XUV pulses obtained in a laboratory-scale environment with a newly developed light source that makes use of the high-order harmonic generation process. For the first time, the formation of high-lying Rydberg atoms by electron-ion recombination during the cluster expansion initially triggered by an intense XUV pulse was identified, giving new insight into the cluster dissociation process.

An intense light pulse interacting with a weakly bound van der Waals cluster consisting of thousands of atoms can eventually lead to the explosion of the cluster and its complete disintegration. During this process, novel ionization mechanisms occur that are not observed in atoms. With a light pulse that is intense enough, many electrons are removed from their atoms that can move within the cluster, where they form a plasma with the ions on the nanometer scale, a so called nanoplasma. Due to collisions between the electrons, some of them may eventually gain sufficient energy to leave the cluster. A large part of the electrons, however, will remain confined to the cluster. It was theoretically predicted that electrons and ions in the nanoplasma recombine to form Rydberg atoms, however, an experimental proof of this hypothesis is still missing. Previous experiments were carried out at large scale facilities like free-electron lasers that have sizes from a few hundred meters to a few kilometers showing already surprising results such as the formation of very high charge states when an intense XUV pulse interacts with the cluster. However, the accessibility to such sources is strongly limited, and the experimental conditions are extremely challenging. The availability of intense light pulses in the extreme-ultraviolet range from an alternative source is therefore important to gain a better understanding of the various processes occurring in clusters and other extended systems such as biomolecules exposed to intense XUV pulses.

Time-of-flight spectrum for xenon atoms and clusters with an average size of 36.000 atoms.

Left side: 2D electron momentum map of argon clusters showing a pronounced central distribution attributed to the ionization of Rydberg atoms with the detector field

Scientists from the Max-Born-Institut have developed a new light source that is based on the process of high-order harmonic generation. In the experiment, an intense pulse in the extreme-ultraviolet range with a duration of 15 fs (1fs=10-15s) interacted with clusters consisting of argon or xenon atoms. In the current issue of Physical Review Letters (Vol. 112-073003 publ. 20 February 2014) Bernd Schütte, Marc Vrakking and Arnaud Rouzée present the results of these studies, which are in very good agreement with previously obtained results from free-electron lasers: the formation of a nanoplasma was inferred by measuring the kinetic energy distributions of electrons formed in the cluster ionization process, showing a characteristic plateau up to a maximum kinetic energy given by the kinetic energy resulting from photoionization of an individual atom. In collaboration with the theoreticians Mathias Arbeiter and Thomas Fennel from the University of Rostock, it was possible to numerically simulate the ionization processes in the cluster and to reproduce the experimental results. In addition, by using the velocity map imaging technique, a yet undiscovered distribution of very slow electrons was observed and attributed the formation of high-lying Rydberg atoms by electron-ion recombination processes during the cluster expansion. Since the binding energies of the electrons are very small, the DC detector electric field used in the experiment was strong enough to ionize these Rydberg atoms, leading to the emission of low energy electrons. This process is also known as frustrated recombination and could now be confirmed experimentally for the first time. The current findings may also explain why in recent experiments using intense X-ray pulses, high charge states up to Xe26+ were observed in clusters, although a large number of recombination processes is expected to take place. Moreover, the opportunity to carry out this type of experiment with a high-order harmonic source makes it possible in the future to perform pump-probe experiments in clusters and other extended systems with a time resolution down to the attosecond range.

Full citation:
Bernd Schütte, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée, "Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source", Physical Review Letters 112, (2014)

... more about:
»clusters »electrons »kinetic »lasers »processes

Dr. Bernd Schütte, +49 (0)30 6392 1248
Prof. Marc J. J. Vrakking, +49 (0)30 6392 1200
Dr. Arnaud Rouzée, +49 (0)30 6392 1240

Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)
Max-Born-Str. 2A
12489 Berlin

Weitere Informationen:

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: clusters electrons kinetic lasers processes

More articles from Physics and Astronomy:

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>