Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing secrets of exploding clusters

24.02.2014
The investigation of cluster explosion dynamics under intense extreme-ultraviolet (XUV) pulses has so far been limited to large scale facilities like free-electron lasers. In a recent publication it was shown that the research on clusters is now also possible with intense XUV pulses obtained in a laboratory-scale environment with a newly developed light source that makes use of the high-order harmonic generation process. For the first time, the formation of high-lying Rydberg atoms by electron-ion recombination during the cluster expansion initially triggered by an intense XUV pulse was identified, giving new insight into the cluster dissociation process.

An intense light pulse interacting with a weakly bound van der Waals cluster consisting of thousands of atoms can eventually lead to the explosion of the cluster and its complete disintegration. During this process, novel ionization mechanisms occur that are not observed in atoms. With a light pulse that is intense enough, many electrons are removed from their atoms that can move within the cluster, where they form a plasma with the ions on the nanometer scale, a so called nanoplasma. Due to collisions between the electrons, some of them may eventually gain sufficient energy to leave the cluster. A large part of the electrons, however, will remain confined to the cluster. It was theoretically predicted that electrons and ions in the nanoplasma recombine to form Rydberg atoms, however, an experimental proof of this hypothesis is still missing. Previous experiments were carried out at large scale facilities like free-electron lasers that have sizes from a few hundred meters to a few kilometers showing already surprising results such as the formation of very high charge states when an intense XUV pulse interacts with the cluster. However, the accessibility to such sources is strongly limited, and the experimental conditions are extremely challenging. The availability of intense light pulses in the extreme-ultraviolet range from an alternative source is therefore important to gain a better understanding of the various processes occurring in clusters and other extended systems such as biomolecules exposed to intense XUV pulses.


Time-of-flight spectrum for xenon atoms and clusters with an average size of 36.000 atoms.


Left side: 2D electron momentum map of argon clusters showing a pronounced central distribution attributed to the ionization of Rydberg atoms with the detector field


Scientists from the Max-Born-Institut have developed a new light source that is based on the process of high-order harmonic generation. In the experiment, an intense pulse in the extreme-ultraviolet range with a duration of 15 fs (1fs=10-15s) interacted with clusters consisting of argon or xenon atoms. In the current issue of Physical Review Letters (Vol. 112-073003 publ. 20 February 2014) http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003 Bernd Schütte, Marc Vrakking and Arnaud Rouzée present the results of these studies, which are in very good agreement with previously obtained results from free-electron lasers: the formation of a nanoplasma was inferred by measuring the kinetic energy distributions of electrons formed in the cluster ionization process, showing a characteristic plateau up to a maximum kinetic energy given by the kinetic energy resulting from photoionization of an individual atom. In collaboration with the theoreticians Mathias Arbeiter and Thomas Fennel from the University of Rostock, it was possible to numerically simulate the ionization processes in the cluster and to reproduce the experimental results. In addition, by using the velocity map imaging technique, a yet undiscovered distribution of very slow electrons was observed and attributed the formation of high-lying Rydberg atoms by electron-ion recombination processes during the cluster expansion. Since the binding energies of the electrons are very small, the DC detector electric field used in the experiment was strong enough to ionize these Rydberg atoms, leading to the emission of low energy electrons. This process is also known as frustrated recombination and could now be confirmed experimentally for the first time. The current findings may also explain why in recent experiments using intense X-ray pulses, high charge states up to Xe26+ were observed in clusters, although a large number of recombination processes is expected to take place. Moreover, the opportunity to carry out this type of experiment with a high-order harmonic source makes it possible in the future to perform pump-probe experiments in clusters and other extended systems with a time resolution down to the attosecond range.


Full citation:
Bernd Schütte, Mathias Arbeiter, Thomas Fennel, Marc J. J. Vrakking and Arnaud Rouzée, "Rare-gas clusters in intense extreme-ultraviolet pulses from a high-order harmonic source", Physical Review Letters 112, (2014)

... more about:
»clusters »electrons »kinetic »lasers »processes


Contact:
Dr. Bernd Schütte, +49 (0)30 6392 1248
Prof. Marc J. J. Vrakking, +49 (0)30 6392 1200
Dr. Arnaud Rouzée, +49 (0)30 6392 1240


Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)
Max-Born-Str. 2A
12489 Berlin

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.073003

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: clusters electrons kinetic lasers processes

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>