Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealed: The secret of plasma heating

29.08.2008
Researchers at the Ruhr University in Bochum (RUB) discover mechanism for energy coupling

The secret of electron heating in low temperature plasmas has been discovered by the Bochum researchers at the Center of Excellence “Plasma Science and Technology” (CPST) at the Ruhr University – who have thereby found the answer to the question which has been puzzling scientists for decades of why particularly the electrons in such plasmas are so hot.

The non-linear behavior of the boundary sheath causes the electric current flowing in the plasma to oscillate. This results in an increase of the electrical current, and thus in the heating of the plasma. This previously unknown mechanism called “non-linear electron resonance heating” is the subject of a report by researchers in the current issue of the world's foremost physics letters journal "Physical Review Letters", which will appear in print on Friday, Aug. 29.

Basic understanding after 30 years

With their research results the Bochum Electrical Engineers Dr. Thomas Mussenbrock and Prof. Ralf Peter Brinkmann (Institute for Theoretical Electrical Engineering at the Ruhr University of Bochum) together with colleagues from the University of California at Berkeley surrounding Prof. Mike Lieberman have contributed to basic understanding of so-called low temperature plasma, which has already been in industrial use for over 30 years. “Since the nineteen seventies vigorous technical debates have been in progress regarding the function of plasma, which, however, have not led to any conclusive results. In particular, we do not fully understand the exact energy coupling mechanism“, stated Thomas Mussenbrock. “Ever since plasma has been discovered and utilized, significant differences have existed between theoretical predictions on the behavior of the plasma and actual measurements.” The mechanism now discovered at the Ruhr University provides a new approach for explaining the heating mechanisms in low temperature plasma for the first time.

Versatile types of plasma

Without plasma, no Pentium: For example electrically excited gases can be used to form the structures on microchips by removing or depositing materials in the nanometer range. Today plasma-based processes already account for nearly one-half of all processing steps in the field of microelectronics. But plasma technology is not only essential here; it is also used in lighting, environmental and medical engineering. One of the particular characteristics of the low temperature plasmas used is the number of electrons contained with temperatures of over 10,000 degrees Celsius – in contrast to ions present as well as neutral atoms and molecules, which are comparatively cold at virtually room temperature . This thermal non-equilibrium is what initiates chemical reactions and other processes, making low temperature plasmas so versatile.

Key to specific utilization

The question of why the electrons could become so hot particularly at very low gas pressures, was not clarified completely up to this time. Researchers at CPST have now been successful in proving this “non-linear electron resonance heating” theoretically and experimentally. The basis of this mechanism is the intrinsic tendency of the plasma to oscillate. Excitation of a certain oscillation – starting from non-linear behavior of the plasma boundary sheath – causes a “self-excitation” of the oscillation in the electrical current flowing in the plasma. Theoretical studies have shown that non-linear electron resonance heating can more than double the efficiency of the energy coupling. Laboratory tests at CPST by Prof. Uwe Czarnetzki (Department of Physics and Astronomy) and Prof. Peter Awakowicz (Department of Electrical Engineering and Information Technology) have confirmed this result. The RUB researchers have simultaneously provided a new approach to understanding how plasma can be excited electrically for maximum efficiency. “Electron resonance can even be controlled specifically to initiate the mechanism”, according to Thomas Mussenbrock.

Dr. Thomas Mussenbrock | alfa
Further information:
http://www.tet.rub.de
http://www.rub.de

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>