Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First results from Large Hadron Collider announced

27.07.2010
First results from Large Hadron Collider announced: University of Toronto team plays leading role

A group of University of Toronto high-energy physicists, along with their 3,000 ATLAS colleagues, announced they have broken world records in the search for new particles as the first findings from the Large Hadron Collider (LHC) were presented this morning in Paris, France.

The first results, following only three months of successful operation of the LHC, have “re-discovered” some of the familiar particles that lie at the heart of the Standard Model of physics. The Standard Model theory has formed the basis of theoretical particle physics for more than 30 years, explaining the particles of matter and the forces that bind them. The first results confirm that the Standard Model is working as expected. This is an essential step before the LHC moves on to new territory, including its ultimate goal of finding the Higgs Boson particle aka the God particle. If found, the Higgs Boson would fully satisfy the Standard Model theory. It would explain why all other known particles exhibit the mass they do and how all existing matter came to be. The scientists are also hoping to uncover the solution to the puzzle of mysterious dark matter that dominates the universe.

The ATLAS collaboration, which includes 38 countries, produced many of the first results. ATLAS is a detector at the LHC that searches for new discoveries in the head-on collisions of extraordinarily high-energy protons. The Canadian contingent of ATLAS, and in particular its U of T members, played a key role in these searches by setting, with an exceptionally high degree of sensitivity, new limits on the mass of such new particles.

Pierre Savard, a U of T physicist and TRIUMF scientist who is one of the two conveners of the Exotics physics group of the ATLAS collaboration, said of this result: “This is an important milestone for ATLAS and the LHC. It signals that we are now exploring uncharted territory at the high energy frontier".

“This means that we can discard a host of theoretical models. Perhaps most importantly, it means that the LHC is now the discovery machine for the next decade,” says team member U of T physicist, Pekka Sinervo.

The Canadian team examined over 200 million proton-proton collisions, looking for collisions that produced particles hundreds of times heavier than ordinary matter. Various theories predict the existence of such objects, known as “excited quarks”. If excited quarks were observed, it would turn the Standard Model on its head, revolutionizing scientists’ understanding of matter and the forces that causes particles to bind together or interact in other ways. Finding no evidence of such particles, the team was able to exclude their existence below a mass of 1,290 GcV/c2 and so reconfirm allegiance to the Standard Model.

The LHC, the world’s largest particle accelerator was launched on March 27. Located in Switzerland, the collider has a circumference of 17 miles and is located 330 feet underground near the French-Swiss border. The LHC is still in its early days of operation, as it makes steady progress toward its ultimate operating conditions. The luminosity – a measure of the collision rate – has already risen by a factor of more than a thousand since the end of March.

All U of T faculty members involved in the project have assisted in designing, building and operating the facility in Switzerland. Savard, who is internationally renowned for being at the centre of discoveries in exotic physics, and his students took leadership roles in the most recent results. He is currently spending two weeks per month coordinating scientific activities at the facility. Savard and his colleagues are also making use of the SciNet supercomputer installed at U of T in 2009 to analyse the huge volume of data involved in the project, an effort supported by Compute Canada, the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

Scientists will get an opportunity to learn more about the first results of the LHC in August when the University of Toronto hosts the 2010 international Hadron Collider Physics Symposium.

MEDIA CONTACTS:

Pierre Savard
Department of Physics
University of Toronto
savard@physics.utoronto.ca
416-420-0974
Pekka Sinervo
Department of Physics
University of Toronto
pekka.sinervo@utoronto.ca
647-283-3074
Peter Krieger
Department of Physics
University of Toronto
krieger@physics.utoronto.ca
416-978-2950
416-465-8186
Kim Luke
Communications, Faculty of Arts & Science
University of Toronto
kim.luke@utoronto.ca
416-978-4352

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>