Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results on the geologic characteristics of the Chang'E-3 exploration region

27.01.2014
SCIENCE CHINA Physics, Mechanics & Astronomy

An article entitled "Geologic characteristics of the Chang'E-3 exploration region"was published online for SCIENCE CHINA Physics, Mechanics & Astronomy on January 21, 2014. It presents some new results on the geologic characteristics of the Chang'E-3 exploration region.


This is a geological map of the CE-3 exploration region. The background image is a TC Morning Map in Lambert projection (TCO_MAPm04_N45E339N42E342SC).

Credit: ©Science China Press

Chang'E-3 mission is the second step in China's lunar exploration program. It has achieved the desired engineering goals by successfully soft landing on the lunar surface. Now people are expecting the lander and rover to send back more and better scientific data which is believed to help fulfill its scientific aims and further our understanding of the Moon.

Chang'E-3 landed successfully in the northern part of Mare Imbrium which had never been visited by any lunar landers or rovers. Chinese planetary scientists are now working on the detailed geological interpretation of the exploration area using multi-source data. With morphological and geological analysis, they hope to nail down the major scientific problems for the target area and the scientific discoveries that could be made, thus laying a scientific foundation for the planning of the lunar exploration. Under the leadership of

Professor Long Xiao from China University of Geosciences (Wuhan), a team of young planetary scientists including Jiannan Zhao, Jun Huang and others have mapped the exploration area and acquired large amounts of information on topography, geomorphology, geologic structure and composition of the landing site and its adjacent region. These results will be published in SCIENCE CHINA Physics, Mechanics & Astronomy, Vol. 54, No. 3, 2014 (pages 569).

In this work, the authors studied the geologic characteristics of the Chang'E-3 exploration region, and produced a geologic map of a 1°×1° region centered near the landing site. They also analyzed the topography and slope using the Digital Terrain Model generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the altitude of the landing site is about 2610 m. The morphology and classification of the impact craters and wrinkle ridges in the area were studied, and the wrinkle ridges were supposed to have different formation mechanisms. After calculating FeO and TiO2 abundances using Multiband Imager (MI) data, two basaltic units are confirmed: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the middle to southern part is Eratosthenian low-Ti/high-Ti mare basalts. In addition the thickness of the Eratosthenian basaltic units was estimated, and two traverses for Yutu rover were proposed, laying a scientific basis for the planning of the lunar exploration.

At this moment, Chang'E-3 is conducting its second and third lunar day exploration work as planned, and all the scientific payloads are in good condition. We hope that the Team of Core Scientists on Chang'E-3 Mission Scientific Data Application and Study would make a best use of the newly acquired data to thoroughly study the landing area, and make more discoveries in morphology, geologic structure, material composition and subsurface structure.

See the article:

Cite | ZHAO J N, HUANG J, QIAO L, et al. Geologic characteristics of the Chang'E-3 exploration region. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57(3): 569-576.

PDF (5088KB): http://phys.scichina.com:8083/sciGe/fileup/PDF/11433_OF_13_5399.pdf

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Guo Yuan-Yuan | EurekAlert!
Further information:
http://www.scichina.com

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>