Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results on the geologic characteristics of the Chang'E-3 exploration region

27.01.2014
SCIENCE CHINA Physics, Mechanics & Astronomy

An article entitled "Geologic characteristics of the Chang'E-3 exploration region"was published online for SCIENCE CHINA Physics, Mechanics & Astronomy on January 21, 2014. It presents some new results on the geologic characteristics of the Chang'E-3 exploration region.


This is a geological map of the CE-3 exploration region. The background image is a TC Morning Map in Lambert projection (TCO_MAPm04_N45E339N42E342SC).

Credit: ©Science China Press

Chang'E-3 mission is the second step in China's lunar exploration program. It has achieved the desired engineering goals by successfully soft landing on the lunar surface. Now people are expecting the lander and rover to send back more and better scientific data which is believed to help fulfill its scientific aims and further our understanding of the Moon.

Chang'E-3 landed successfully in the northern part of Mare Imbrium which had never been visited by any lunar landers or rovers. Chinese planetary scientists are now working on the detailed geological interpretation of the exploration area using multi-source data. With morphological and geological analysis, they hope to nail down the major scientific problems for the target area and the scientific discoveries that could be made, thus laying a scientific foundation for the planning of the lunar exploration. Under the leadership of

Professor Long Xiao from China University of Geosciences (Wuhan), a team of young planetary scientists including Jiannan Zhao, Jun Huang and others have mapped the exploration area and acquired large amounts of information on topography, geomorphology, geologic structure and composition of the landing site and its adjacent region. These results will be published in SCIENCE CHINA Physics, Mechanics & Astronomy, Vol. 54, No. 3, 2014 (pages 569).

In this work, the authors studied the geologic characteristics of the Chang'E-3 exploration region, and produced a geologic map of a 1°×1° region centered near the landing site. They also analyzed the topography and slope using the Digital Terrain Model generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the altitude of the landing site is about 2610 m. The morphology and classification of the impact craters and wrinkle ridges in the area were studied, and the wrinkle ridges were supposed to have different formation mechanisms. After calculating FeO and TiO2 abundances using Multiband Imager (MI) data, two basaltic units are confirmed: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the middle to southern part is Eratosthenian low-Ti/high-Ti mare basalts. In addition the thickness of the Eratosthenian basaltic units was estimated, and two traverses for Yutu rover were proposed, laying a scientific basis for the planning of the lunar exploration.

At this moment, Chang'E-3 is conducting its second and third lunar day exploration work as planned, and all the scientific payloads are in good condition. We hope that the Team of Core Scientists on Chang'E-3 Mission Scientific Data Application and Study would make a best use of the newly acquired data to thoroughly study the landing area, and make more discoveries in morphology, geologic structure, material composition and subsurface structure.

See the article:

Cite | ZHAO J N, HUANG J, QIAO L, et al. Geologic characteristics of the Chang'E-3 exploration region. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57(3): 569-576.

PDF (5088KB): http://phys.scichina.com:8083/sciGe/fileup/PDF/11433_OF_13_5399.pdf

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Guo Yuan-Yuan | EurekAlert!
Further information:
http://www.scichina.com

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>