Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results on the geologic characteristics of the Chang'E-3 exploration region

27.01.2014
SCIENCE CHINA Physics, Mechanics & Astronomy

An article entitled "Geologic characteristics of the Chang'E-3 exploration region"was published online for SCIENCE CHINA Physics, Mechanics & Astronomy on January 21, 2014. It presents some new results on the geologic characteristics of the Chang'E-3 exploration region.


This is a geological map of the CE-3 exploration region. The background image is a TC Morning Map in Lambert projection (TCO_MAPm04_N45E339N42E342SC).

Credit: ©Science China Press

Chang'E-3 mission is the second step in China's lunar exploration program. It has achieved the desired engineering goals by successfully soft landing on the lunar surface. Now people are expecting the lander and rover to send back more and better scientific data which is believed to help fulfill its scientific aims and further our understanding of the Moon.

Chang'E-3 landed successfully in the northern part of Mare Imbrium which had never been visited by any lunar landers or rovers. Chinese planetary scientists are now working on the detailed geological interpretation of the exploration area using multi-source data. With morphological and geological analysis, they hope to nail down the major scientific problems for the target area and the scientific discoveries that could be made, thus laying a scientific foundation for the planning of the lunar exploration. Under the leadership of

Professor Long Xiao from China University of Geosciences (Wuhan), a team of young planetary scientists including Jiannan Zhao, Jun Huang and others have mapped the exploration area and acquired large amounts of information on topography, geomorphology, geologic structure and composition of the landing site and its adjacent region. These results will be published in SCIENCE CHINA Physics, Mechanics & Astronomy, Vol. 54, No. 3, 2014 (pages 569).

In this work, the authors studied the geologic characteristics of the Chang'E-3 exploration region, and produced a geologic map of a 1°×1° region centered near the landing site. They also analyzed the topography and slope using the Digital Terrain Model generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the altitude of the landing site is about 2610 m. The morphology and classification of the impact craters and wrinkle ridges in the area were studied, and the wrinkle ridges were supposed to have different formation mechanisms. After calculating FeO and TiO2 abundances using Multiband Imager (MI) data, two basaltic units are confirmed: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the middle to southern part is Eratosthenian low-Ti/high-Ti mare basalts. In addition the thickness of the Eratosthenian basaltic units was estimated, and two traverses for Yutu rover were proposed, laying a scientific basis for the planning of the lunar exploration.

At this moment, Chang'E-3 is conducting its second and third lunar day exploration work as planned, and all the scientific payloads are in good condition. We hope that the Team of Core Scientists on Chang'E-3 Mission Scientific Data Application and Study would make a best use of the newly acquired data to thoroughly study the landing area, and make more discoveries in morphology, geologic structure, material composition and subsurface structure.

See the article:

Cite | ZHAO J N, HUANG J, QIAO L, et al. Geologic characteristics of the Chang'E-3 exploration region. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57(3): 569-576.

PDF (5088KB): http://phys.scichina.com:8083/sciGe/fileup/PDF/11433_OF_13_5399.pdf

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Guo Yuan-Yuan | EurekAlert!
Further information:
http://www.scichina.com

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>