Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results on the geologic characteristics of the Chang'E-3 exploration region

27.01.2014
SCIENCE CHINA Physics, Mechanics & Astronomy

An article entitled "Geologic characteristics of the Chang'E-3 exploration region"was published online for SCIENCE CHINA Physics, Mechanics & Astronomy on January 21, 2014. It presents some new results on the geologic characteristics of the Chang'E-3 exploration region.


This is a geological map of the CE-3 exploration region. The background image is a TC Morning Map in Lambert projection (TCO_MAPm04_N45E339N42E342SC).

Credit: ©Science China Press

Chang'E-3 mission is the second step in China's lunar exploration program. It has achieved the desired engineering goals by successfully soft landing on the lunar surface. Now people are expecting the lander and rover to send back more and better scientific data which is believed to help fulfill its scientific aims and further our understanding of the Moon.

Chang'E-3 landed successfully in the northern part of Mare Imbrium which had never been visited by any lunar landers or rovers. Chinese planetary scientists are now working on the detailed geological interpretation of the exploration area using multi-source data. With morphological and geological analysis, they hope to nail down the major scientific problems for the target area and the scientific discoveries that could be made, thus laying a scientific foundation for the planning of the lunar exploration. Under the leadership of

Professor Long Xiao from China University of Geosciences (Wuhan), a team of young planetary scientists including Jiannan Zhao, Jun Huang and others have mapped the exploration area and acquired large amounts of information on topography, geomorphology, geologic structure and composition of the landing site and its adjacent region. These results will be published in SCIENCE CHINA Physics, Mechanics & Astronomy, Vol. 54, No. 3, 2014 (pages 569).

In this work, the authors studied the geologic characteristics of the Chang'E-3 exploration region, and produced a geologic map of a 1°×1° region centered near the landing site. They also analyzed the topography and slope using the Digital Terrain Model generated from Terrain Camera (TC) images. The exploration region is overall relatively flat and the altitude of the landing site is about 2610 m. The morphology and classification of the impact craters and wrinkle ridges in the area were studied, and the wrinkle ridges were supposed to have different formation mechanisms. After calculating FeO and TiO2 abundances using Multiband Imager (MI) data, two basaltic units are confirmed: the northern part belongs to Imbrian low-Ti/very-low-Ti mare basalts, and the middle to southern part is Eratosthenian low-Ti/high-Ti mare basalts. In addition the thickness of the Eratosthenian basaltic units was estimated, and two traverses for Yutu rover were proposed, laying a scientific basis for the planning of the lunar exploration.

At this moment, Chang'E-3 is conducting its second and third lunar day exploration work as planned, and all the scientific payloads are in good condition. We hope that the Team of Core Scientists on Chang'E-3 Mission Scientific Data Application and Study would make a best use of the newly acquired data to thoroughly study the landing area, and make more discoveries in morphology, geologic structure, material composition and subsurface structure.

See the article:

Cite | ZHAO J N, HUANG J, QIAO L, et al. Geologic characteristics of the Chang'E-3 exploration region. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57(3): 569-576.

PDF (5088KB): http://phys.scichina.com:8083/sciGe/fileup/PDF/11433_OF_13_5399.pdf

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

Guo Yuan-Yuan | EurekAlert!
Further information:
http://www.scichina.com

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>