Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistivity switch is window to role of magnetism in iron-based superconductors

06.06.2013
Physicists at the U.S. Department of Energy’s Ames Laboratory have discovered surprising changes in electrical resistivity in iron-based superconductors. The findings, reported in Nature Communications, offer further evidence that magnetism and superconductivity are closely related in this class of novel superconductors.
“We found that the directions of smallest and largest resistivity within the conducting layers are significantly dependent on the composition of the compounds, and in some compositions, they change sign, or, in other words, electric current flows easier in the direction that was originally more difficult” said Ames Laboratory faculty scientist Ruslan Prozorov. “This change can only be explained if the underlying magnetic behavior is intimately connected to superconductivity.”

Understanding the basic physics behind iron-based superconductivity may someday make it possible to use them for super-efficient energy technologies.

Erick Blomberg, an Ames Laboratory graduate research assistant, spearheaded the research under the guidance of Prozorov and Ames Laboratory scientist Makariy Tanatar. The team studied resistivity in barium-iron-arsenide compounds with different chemical substitutions, which allowed for probing electronic properties throughout the entire regime in which magnetism and superconductivity coexist.

In conventional superconductors, magnetism and superconductivity do not coexist and one suppresses another. In contrast, some iron-based superconductors show significant overlap between magnetism and superconductivity, which allows for unique measurements of their properties in the coexistence region.

“But there is a complication,” said Prozorov, who is also an Iowa State University professor in the Department of Physics & Astronomy. “In the coexistence region, the crystal structure of barium-iron-arsenide crystals is such that the crystal splits into the structural domains (also known as structural twins), which makes studying directional electronic properties difficult.

To eliminate the structural domains, the team developed a technique in which single crystals are physically pulled apart. A sample is suspended by wires in a horseshoe-shaped bracket, which can be mechanically stretched. This assembly is then placed into a small liquid helium cryostat to reach temperatures where magnetism and superconductivity coexist. Polarized optical microscopy is used to distinguish between different structural domains to verify that the samples are in the detwinned (without fragmented domains) state. Electric resistivity is then measured.

Blomberg and colleagues studied a series of samples, covering a precise range of compositions, provided by Nanjing University’s Hai-Hu Wen.

“In this case, making chemical substitutions was, in effect, taking electrons away from the compound or adding electrons to the compound,” said Blomberg, who will soon receive a PhD in condensed matter physics from Iowa State University. “And as you take electrons away, at a certain point the direction in which it was harder for electricity to flow becomes the direction it was easier for it to flow.”

Theoretical predictions made by physicists Jörg Schmalian and Rafael Fernandez (both former Ames Laboratory scientists) along with Naval Research Lab’s Igor Mazin and Michelle Johannes, closely matched the experimental findings.

The research is supported by the U.S. Department of Energy Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.
Contacts:
Ruslan Prozorov, Materials Sciences and Engineering, 515-294-9901
Breehan Gerleman Lucchesi, Public Affairs, 515-294-9750

Breehan Gerleman Lucchesi | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>